DOI QR코드

DOI QR Code

Large Glass-forming Ability and Magnetocaloric Effect in Gd55Co20Al23Si2 Bulk Metallic Glass

  • Li, Qian (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences) ;
  • Cai, Pingping (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences) ;
  • Shen, Baolong (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences) ;
  • Akihiro, Makino (Institute for Materials Research, Tohoku University) ;
  • Akihisa, Inoue (Institute for Materials Research, Tohoku University)
  • 투고 : 2011.08.21
  • 심사 : 2011.10.14
  • 발행 : 2011.12.31

초록

In this study, we investigated the glass-forming ability (GFA) and magnetocaloric effect (MCE) of $Gd_{55}Co_{20}Al_{23}Si_2$ bulk glassy alloy. It is found that the addition of 2 at% Si is effective for extension of the supercooled liquid region (${\Delta}T_x$), the ${\Delta}T_x$ is 55 K for the $Gd_{55}Co_{20}Al_{25}$ glassy alloy, and increases to 79 K for the $Gd_{55}Co_{20}Al_{23}Si_2$ alloy. As a result, $Gd_{55}Co_{20}Al_{23}Si_2$ glassy alloys with diameters up to 5 mm were successfully synthesized. The alloys also exhibit large MCE, i.e., the magnetic entropy change (${\Delta}S_m$) of 8.9 J $kg^{-1}\;K^{-1}$, the full width at half maximum of the ${\Delta}S_m$ (${\delta}T_{FWHM}$) of 87 K, and the refrigerant capacity (RC) of 774 J $kg^{-1}$.

키워드

참고문헌

  1. V. K. Pecharsky and K. A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997). https://doi.org/10.1103/PhysRevLett.78.4494
  2. O. Tegus, E. Bruck, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002). https://doi.org/10.1038/415150a
  3. K. A. Gschneidner, V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005). https://doi.org/10.1088/0034-4885/68/6/R04
  4. Q. Luo, D. Q. Zhao, M. X. Pan, and W. H. Wang, Appl. Phys. Lett. 89, 081914 (2006). https://doi.org/10.1063/1.2338770
  5. Q. Luo, D. Q. Zhao, M. X. Pan, and W. H. Wang, Appl. Phys. Lett. 90, 211903 (2007). https://doi.org/10.1063/1.2741120
  6. F. X. Hu, B. G. Shen, and J. R. Sun, Appl. Phys. Lett. 76, 3460 (2000). https://doi.org/10.1063/1.126677
  7. F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao, and X. X. Zhang, Appl. Phys. Lett. 78, 3675 (2001). https://doi.org/10.1063/1.1375836
  8. H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001). https://doi.org/10.1063/1.1419048
  9. M. E. Wood and W. H. Potter, Cryogenics 25, 667 (1985). https://doi.org/10.1016/0011-2275(85)90187-0
  10. H. Fu, X. Y. Zhang, H. J. Yu, B. H. Teng, and X. T. Zu, Solid State Commun. 145, 15 (2008). https://doi.org/10.1016/j.ssc.2007.10.007
  11. J. Du, Q. Zheng, Y. B. Li, Q. Zhang, D. Li, and Z. D. Zhang, J. Appl. Phys. 103, 023918 (2008). https://doi.org/10.1063/1.2836956
  12. L. Liang, X. Hui, Y. Wu, and G. L. Chen, J. Alloy. Compd. 457, 541 (2008). https://doi.org/10.1016/j.jallcom.2007.03.101
  13. J. Guo, X. F. Bian, Q. G. Meng, Y. Zhao, S. H. Wang, C. D. Wang, and T. B. Li, Scripta Mater. 55, 1027 (2006). https://doi.org/10.1016/j.scriptamat.2006.08.021
  14. The Japan Institute of Metals, Metals Databook, Maruzen, Tokyo (2004) p.8.
  15. S. J. Poon, G. J. Shiflet, F. Q. Guo, and V. Ponnambalam, J. Non-Cryst. Solids 317, 1 (2003). https://doi.org/10.1016/S0022-3093(02)02000-8
  16. F. R. De Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals, The North-Holland Physics Publishing, Amsterdam (1989) p. 217.
  17. K. A. Gschneidner and V. K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000). https://doi.org/10.1146/annurev.matsci.30.1.387
  18. V. Provenzano, A. J. Shapiro, and R. D. Shull, Nature 429, 853 (2004). https://doi.org/10.1038/nature02657
  19. J. Du, Q. Zheng, E. Bruck, K. H. J. Buschow, W. B. Cui, W. J. Feng, and Z. D. Zhang, J. Magn. Magn. Mater. 321, 413 (2009). https://doi.org/10.1016/j.jmmm.2008.09.034