DOI QR코드

DOI QR Code

Pros and cons of using aberrant glycosylation as companion biomarkers for therapeutics in cancer

  • Received : 2011.11.07
  • Published : 2011.12.31

Abstract

Cancer treatment has been stratified by companion biomarker tests that serve to provide information on the genetic status of cancer patients and to identify patients who can be expected to respond to a given treatment. This stratification guarantees better efficiency and safety during treatment. Cancer patients, however, marginally benefit from the current companion biomarker-aided treatment regimens, presumably because companion biomarker tests are dependent solely on the mutation status of several genes status quo. In the true sense of the term, "personalized medicine", cancer patients are deemed to be identified individually by their molecular signatures, which are not necessarily confined to genetic mutations. Glycosylation is tremendously dynamic and shows alterations in cancer. Evidence is accumulating that aberrant glycosylation contributes to the development and progression of cancer, holding the promise for use of glycosylation status as a companion biomarker in cancer treatment. There are, however, several challenges derived from the lack of a reliable detection system for aberrant glycosylation, and a limited library of aberrant glycosylation. The challenges should be addressed if glycosylation status is to be used as a companion biomarker in cancer treatment and contribute to the fulfillment of personalized medicine.

Keywords

References

  1. World Health Organization Report (2009) Global health risks: mortality and burden of disease attributable to selected major risks.
  2. Ross, J. S. and Ginsburg, G. S. (2002) Integrating diagnostics and therapeutics: revolutionizing drug discovery and patient care. Drug. Discov. Today 7, 859-864. https://doi.org/10.1016/S1359-6446(02)02405-4
  3. Nowell, P. and Hungerford, D. (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497.
  4. Lugo, T. G., Pendergast, A. M., Muller, A. J. and Witte, O. N. (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247, 1079-1082. https://doi.org/10.1126/science.2408149
  5. Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J. and Lydon, N. B. (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561-566. https://doi.org/10.1038/nm0596-561
  6. Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A. and McGuire W. L. (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177-182. https://doi.org/10.1126/science.3798106
  7. Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J., Pegram, M., Baselga, J. and Norton, L. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for meta-static breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783-792. https://doi.org/10.1056/NEJM200103153441101
  8. Vogel, C. L., Cobleigh, M. A., Tripathy, D., Gutheil, J. C., Harris, L. N., Fehrenbacher, L., Slamon, D. J., Murphy, M., Novotny, W. F., Burchmore, M., Shak, S., Stewart, S. J. and Press, M. (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing meta-static breast cancer. J. Clin. Oncol. 20, 719-726. https://doi.org/10.1200/JCO.20.3.719
  9. Herbst. R. S., Fukuoka, M. and Baselga, J. (2004) Gefitinib-a novel targeted approach to treating cancer. Nat. Rev. Cancer 4, 956-965. https://doi.org/10.1038/nrc1506
  10. Ferrara, N. (2005) VEGF as a therapeutic target in cancer. Oncology 69 (Suppl. 3), 11-16. https://doi.org/10.1159/000088479
  11. Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., Fujiwara, S., Watanabe, H., Kurashina, K., Hatanaka, H., Bando, M., Ohno, S., Ishikawa, Y., Aburatani, H., Niki, T., Sohara, Y., Sugiyama, Y. and Mano, H. (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561-566. https://doi.org/10.1038/nature05945
  12. Vo, T. T. and Letai, A. (2010) BH3-only proteins and their effects on cancer. Adv. Exp. Med. Biol. 687, 49-63. https://doi.org/10.1007/978-1-4419-6706-0_3
  13. Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N., Johnson, D. A., Richardson, T. B., Santarosa, M., Dillon, K. J., Hickson, I., Knights, C., Martin, N. M., Jackson, S. P., Smith, G. C. and Ashworth, A. (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917-921. https://doi.org/10.1038/nature03445
  14. Masamura, S., Santner, S. J., Heitjan, D. F. and Santen, R. J. (1995) Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells. J. Clin. Endocrinol. Metab. 80, 2918-2925. https://doi.org/10.1210/jc.80.10.2918
  15. Baxter, E. J., Scott, L. M., Campbell, P. J., East, C., Fourouclas, N., Swanton, S., Vassiliou, G. S., Bench, A. J., Boyd, E. M., Curtin, N., Scott, M. A., Erber, W. N. and Green, A. R. ; Cancer Genome Project (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054-1061. https://doi.org/10.1016/S0140-6736(05)71142-9
  16. Liu, P., Cheng, H., Roberts, T. M. and Zhao, J. J. (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627-644. https://doi.org/10.1038/nrd2926
  17. Swaroop, A., Chew, E. Y., Bowes, Rickman, C. and Abecasis, G. R. (2009) Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu. Rev. Genomics Hum. Genet. 10, 19-43. https://doi.org/10.1146/annurev.genom.9.081307.164350
  18. Johnson, A. D. and O'Donnell, C. J. (2009) An open access database of genome-wide association results. BMC Med. Genet. 10, 6.
  19. Reddy, E. P., Reynold, R. K., Santos, E. and Barbacid, M. A. (1982) A point mutation is responsible for the acquisition of transforming properties of the T24 human bladder carcinoma oncogene. Nature 300, 149-152. https://doi.org/10.1038/300149a0
  20. Capon, D. J., Seeburg, P. H., McGrath, J. P., Hayflick, J. S., Edman, U., Levinson, A. D. and Goeddel, D. V. (1983) Activation of Ki-ras2 gene in human colon and lung carcinomas by two different point mutations. Nature 304, 507-513. https://doi.org/10.1038/304507a0
  21. Bos, J. L., Toksoz, D., Marshall, C. J., Verlaan-de Vries, M., Veeneman, G. H., van der Eb, A. J., van Boom, J. H., Janssen, J. W. and Steenvoorden, A. C. (1985) Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. Nature 315, 726-730. https://doi.org/10.1038/315726a0
  22. Lievre, A., Bachet, J. B., Boige, V., Cayre, A., Le Corre, D., Buc, E., Ychou, M., Bouche, O., Landi, B., Louvet, C., Andre, T., Bibeau, F., Diebold, M. D., Rougier, P., Ducreux, M., Tomasic, G., Emile, J. F., Penault-Llorca, F. and Laurent-Puig, P. (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 26, 374-379. https://doi.org/10.1200/JCO.2007.12.5906
  23. Amado, R. G., Wolf, M., Peeters, M., Van Cutsem, E., Siena, S., Freeman, D. J., Juan, T., Sikorski, R., Suggs, S., Radinsky, R., Patterson, S. D. and Chang, D. D. (2008) Wild-type KRAS is required for panitumumab efficacy in patients with meta-static colorectal cancer. J. Clin. Oncol. 26, 1626-1634. https://doi.org/10.1200/JCO.2007.14.7116
  24. Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., Ince, W. L., Janne, P. A., Januario, T., Johnson, D. H., Klein, P., Miller, V. A., Ostland, M. A., Ramies, D. A., Sebisanovic, D., Stinson, J. A., Zhang, Y. R., Seshagiri, S. and Hillan, K. J. (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 23, 5900-5909. https://doi.org/10.1200/JCO.2005.02.857
  25. The Food and Drug Administration (2005) Drug-Diagnostic Co-Development Concept Paper (Draft-Not for Implementation).
  26. Holt, G. D. and Hart, G. W. (1986) The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261, 8049-8057.
  27. Wang, Z., Gucek, M. and Hart, G. W. (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc. Natl. Acad. Sci. U.S.A. 105, 13793-13798. https://doi.org/10.1073/pnas.0806216105
  28. Maeda, Y. and Kinoshita, T. (2011) Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog. Lipid. Res. 50, 411-424. https://doi.org/10.1016/j.plipres.2011.05.002
  29. Yu, R. K., Tsai, Y. T., Ariga, T. and Yanagisawa, M. (2011) Structures, biosynthesis., functions of gangliosides-an overview. J. Oleo. Sci. 60, 537-544. https://doi.org/10.5650/jos.60.537
  30. Helenius, A. and Aebi, M. (2001) Intracellular functions of N-linked glycans. Science 291, 2364-2369. https://doi.org/10.1126/science.291.5512.2364
  31. Roth, J. (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem. Rev. 102, 285-303. https://doi.org/10.1021/cr000423j
  32. Ko, J. H., Miyoshi, E., Noda, K., Ekuni, A., Kang, R., Ikeda, Y. and Taniguchi, N. (1999) Regulation of the GnT-V promoter by transcription factor Ets-1 in various cancer cell lines. J. Biol. Chem. 274, 22941-22948. https://doi.org/10.1074/jbc.274.33.22941
  33. Dall'Olio, F. and Chiricolo, M. (2001) Sialyltransferases in cancer. Glycoconj. J. 18, 841-850. https://doi.org/10.1023/A:1022288022969
  34. Cazet, A., Julien, S., Bobowski, M., Krzewinski-Recchi, M. A., Harduin-Lepers, A., Groux-Degroote, S. and Delannoy, P. (2010) Consequences of the expression of sialylated antigens in breast cancer. Carbohydr. Res. 345, 1377-1383. https://doi.org/10.1016/j.carres.2010.01.024
  35. Itzkowitz, S. H., Bloom, E. J., Kokal, W. A., Modin, G., Hakomori, S. and Kim, Y. S. (1990) Sialosyl-Tn. A novel mucin antigen associated with prognosis in colorectal cancer patients. Cancer 66, 1960-1966. https://doi.org/10.1002/1097-0142(19901101)66:9<1960::AID-CNCR2820660919>3.0.CO;2-X
  36. Ma, X. C., Terata, N., Kodama, M., Jancic, S., Hosokawa, Y. and Hattori, T. (1993) Expression of sialyl-Tn antigen is correlated with survival time of patients with gastric carcinomas. Eur. J. Cancer 29A, 1820-1823.
  37. Burchell, J. M., Mungul, A. and Taylor-Papadimitriou, J. (2001) O-linked glycosylation in the mammary gland: changes that occur during malignancy. J. Mammary Gland Biol. Neoplasia 6, 355-364. https://doi.org/10.1023/A:1011331809881
  38. Kim, Y. S., Hwang, S. Y., Kang, H. Y., Sohn, H., Oh, S., Kim, J. Y., Yoo, J. S., Kim, Y. H., Kim, C. H., Jeon, J. H., Lee, J. M., Kang, H. A., Miyoshi, E., Taniguchi, N., Yoo, H. S. and Ko, J. H. (2008) Functional proteomics study reveals that N-Acetylglucosaminyltransferase V reinforces the invasive/metastatic potential of colon cancer through aberrant glycosylation on tissue inhibitor of metalloproteinase-1. Mol. Cell. Proteomics. 7, 1-14. https://doi.org/10.1074/mcp.M700084-MCP200
  39. Ben-David, T., Sagi-Assif, O., Meshel, T., Lifshitz, V., Yron, I. and Witz, I. P. (2008) The involvement of the sLe-a selectin ligand in the extravasation of human colorectal carcinoma cells. Immunol. Lett. 116, 218-224. https://doi.org/10.1016/j.imlet.2007.11.022
  40. Shirure, V. S., Henson, K. A., Schnaar, R. L., Nimrichter, L. and Burdick, M. M. (2011) Gangliosides expressed on breast cancer cells are E-selectin ligands. Biochem. Biophys. Res. Commun. 406, 423-429. https://doi.org/10.1016/j.bbrc.2011.02.061
  41. Chen, G., Howe, A. G., Xu, G., Frohlich, O., Klein, J. D. and Sands, J. M. (2011) Mature N-linked glycans facilitate UT-A1 urea transporter lipid raft compartmentalization. FASEB J. In press.
  42. Hollenstein, K., Dawson, R. J. and Locher, K. P. (2007) Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol. 17, 412-418. https://doi.org/10.1016/j.sbi.2007.07.003
  43. Beretta, G. L., Benedetti, V., Cossa, G., Assaraf, Y. G., Bram, E., Gatti, L., Corna, E., Carenini, N., Colangelo, D., Howell, S. B., Zunino, F. and Perego, P. (2010) Increased levels and defective glycosylation of MRPs in ovarian carcinoma cells resistant to oxaliplatin. Biochem. Pharmacol. 79, 1108-1117. https://doi.org/10.1016/j.bcp.2009.12.002
  44. Leffler, H., Carlsson, S., Hedlund, M., Qian, Y. and Poirier, F. (2004) Introduction to galectins. Glycoconj. J. 19, 433-440.
  45. Fred Brewer, C. (2002) Binding and cross-linking properties of galectins. Biochim. Biophys. Acta. 1572, 255-262. https://doi.org/10.1016/S0304-4165(02)00312-4
  46. Liu, F. T. and Rabinovich GA. (2005) Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29-41. https://doi.org/10.1038/nrc1527
  47. Camby, I., Le Mercier, M., Lefranc, F. and Kiss, R. (2006) Galectin-1: a small protein with major functions. Glycobiology 16, 137R-157. https://doi.org/10.1093/glycob/cwl025
  48. Garner, O. B. and Baum, L. G. (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signaling. Biochem. Soc. Trans. 36, 1472-1477. https://doi.org/10.1042/BST0361472
  49. Wu, A. M., Lisowska, E., Duk, M. and Yang, Z. (2009) Lectins as tools in glycoconjugate research. Glycoconj. J. 26, 899-913. https://doi.org/10.1007/s10719-008-9119-7
  50. Duverger, E., Frison, N., Roche, A. C. and Monsigny, M. (2003) Carbohydrate-lectin interactions assessed by surface plasmon resonance. Biochimie 85, 167-179. https://doi.org/10.1016/S0300-9084(03)00060-9
  51. Ahn, H. J., Kim, Y. S., Lee, C. H., Cho, E. W., Yoo, H. S., Kim, S. H. Ko, J. H. and Kim, S. J. (2011) Generation of antibodies recognizing an aberrant glycoform of human tissue inhibitor of metalloproteinase-1 (TIMP-1) using decoy immunization and phage display. J. Biotechnol. 151, 225-230. https://doi.org/10.1016/j.jbiotec.2010.12.004
  52. Yoshida-Moriguchi, T., Yu, L., Stalnaker, S. H., Davis, S., Kunz, S., Madson, M., Oldstone, M. B., Schachter, H., Wells, L. and Campbell, K. P. (2010) O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327, 88-92. https://doi.org/10.1126/science.1180512

Cited by

  1. Effect of posttranslational modifications on enzyme function and assembly vol.92, 2013, https://doi.org/10.1016/j.jprot.2013.03.025
  2. HSF1 and Sp1 Regulate FUT4 Gene Expression and Cell Proliferation in Breast Cancer Cells vol.115, pp.1, 2014, https://doi.org/10.1002/jcb.24645
  3. Semi-quantitative Measurement of a Specific Glycoform Using a DNA-tagged Antibody and Lectin Affinity Chromatography for Glyco-biomarker Development vol.14, pp.3, 2015, https://doi.org/10.1074/mcp.O114.043117
  4. Tumor-associated autoantibodies as diagnostic and prognostic biomarkers vol.45, pp.12, 2012, https://doi.org/10.5483/BMBRep.2012.45.12.236
  5. Beta-1,4-galactosyltransferase II predicts poor prognosis of patients with non-metastatic clear-cell renal cell carcinoma vol.39, pp.2, 2017, https://doi.org/10.1177/1010428317691417
  6. Expression level and glycan dynamics determine the net effects of TIMP-1 on cancer progression vol.45, pp.11, 2012, https://doi.org/10.5483/BMBRep.2012.45.11.233
  7. Chondroitin sulfate-cell membrane effectors as regulators of growth factor-mediated vascular and cancer cell migration vol.1840, pp.8, 2014, https://doi.org/10.1016/j.bbagen.2014.01.009