DOI QR코드

DOI QR Code

p53 is not necessary for nuclear translocation of GAPDH during NO-induced apoptosis

  • Kim, Jum-Ji (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Lee, Mi-Young (Department of Medical Biotechnology, Soonchunhyang University)
  • Received : 2011.08.09
  • Accepted : 2011.09.16
  • Published : 2011.12.31

Abstract

Aberrant GAPDH expression following S-nitrosoglutathione (GSNO) treatment was compared in HepG2 cells, which express functional p53, and Hep3B cells, which lack functional p53. The results of Western blotting and fluorescent immunocytochemistry revealed that nuclear translocation and accumulation of GAPDH occur in both HepG2 and Hep3B cells. This finding suggests that p53 may not be necessary for the GSNO-induced translocation of GAPDH to the nucleus during apoptotic cell death in hepatoma cells.

Keywords

References

  1. Moncada, S., Palmer, R. M. and Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43, 109-142.
  2. Nathan, C. (1992) Nitric oxide as a secretory product of mammalian cell. FASEB J. 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  3. Mohr, S., Hallak, H., de Boitte, A., Lapetina, E. G. and Brune, B. (1999) Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 274, 9427-9430. https://doi.org/10.1074/jbc.274.14.9427
  4. Messmer, U. K., Ankarcrona, M., Nicotera, P. and Brune, B. (1994) p53 expression in nitric oxide-induced apoptosis. FEBS Lett. 355, 23-26. https://doi.org/10.1016/0014-5793(94)01161-3
  5. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. and Jacks, T. (1993) p53 required for radiation-induced apoptosis in mouse thymocyte. Nature 362, 847-849. https://doi.org/10.1038/362847a0
  6. Clarke, A. R., Purdie, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L. and Wyllie, A. H. (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849-852. https://doi.org/10.1038/362849a0
  7. Ho, Y. S., Liu, H. L., Duh, J. S., Chen, R. J., Ho, W. L., Jeng, J. H., Wang, Y. J. and Lin, J. K. (1999) Induction of apoptosis by S-nitrosoglutathione and $Cu^{2+}\;or\;Ni^{2+}$ ion through modulation of bax, bad, and bcl-2 proteins in human colon adenocarcinoma cells. Mol. Carcinog. 26, 201-211. https://doi.org/10.1002/(SICI)1098-2744(199911)26:3<201::AID-MC9>3.0.CO;2-K
  8. Kim, C. I., Lee, S. H., Seong, G. J., Kim, Y. H. and Lee, M. Y. (2006) Nuclear translocation and overexpression of GAPDH by the hyper-pressure in retinal ganglion cell. Biochem. Biophys. Res. Commun. 341, 1237-1243. https://doi.org/10.1016/j.bbrc.2006.01.087
  9. Kim, J. J., Kim, Y. H. and Lee, M. Y. (2009) Proteomic characterization of differentially expressed proteins associated with nitric oxide stress in retinal ganglion cells. BMB Rep. 42, 456-461. https://doi.org/10.5483/BMBRep.2009.42.7.456
  10. Kim, J. J. and Lee, M. Y. (2009) Differential expression of cytosolic and nuclear proteins during S-nitrosoglutathione-induced cell death. Biochip J. 3, 326-332.
  11. Sirover, M. A. (1997) Role of the glycolytic protein, glyceraldehydes- 3-phosphate dehydrogenase, in normal cell function and in cell pathology. J. Cell Biochem. 66, 133-140. https://doi.org/10.1002/(SICI)1097-4644(19970801)66:2<133::AID-JCB1>3.0.CO;2-R
  12. Vaudry, D. Falluel-Morel, A., Leuillet, S., Vaudry, H. and Gonzalez, B. J. (2003) Regulators of cerebellar granule cell development act through specific signaling pathways. Science 300, 1532-1534. https://doi.org/10.1126/science.1085260
  13. Sirover, M. A. (2005) New nuclear functions of the glycolytic protein, glyceraldehydes-3-phosphate dehydrogenase, in mammalian cells. J. Cell Biochem. 95, 45-52. https://doi.org/10.1002/jcb.20399
  14. Mazzola, J. L. and Sirover, M. A. (2003) Subcellular localization of human glyceraldehydes-3-phosphate dehydrogenase is independent of its glycolytic function. Biochim. Biophys. Acta. 1622, 50-56. https://doi.org/10.1016/S0304-4165(03)00117-X
  15. Berry, M. D. and Boulton, A. A. (2000) Glyceraldehyde-3-phosphate dehydrogenase and apoptosis. J. Neurosci. Res. 60, 150-154. https://doi.org/10.1002/(SICI)1097-4547(20000415)60:2<150::AID-JNR3>3.0.CO;2-4
  16. Butterfield, D. A., Hardas, S. S. and Lange, M. L. (2010) Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration. J. Alzheimers Dis. 20, 369-393. https://doi.org/10.3233/JAD-2010-1375
  17. Senatorov, V. V., Charles, V., Reddy, P. H., Tagle, D. A. and Chuang, D. M. (2003) Overexpression and nuclear accumulation of glyceraldehydes-3-phosphate dehydrogenase in transgenic mouse model of Huntington's disease. Mol. Cell Neurosci. 22, 285-297. https://doi.org/10.1016/S1044-7431(02)00013-1
  18. Ventura, M., Mateo, F., Serratosa, J., Salaet, I., Carujo, S., Bachs, O. and Pujol, M. J. (2010) Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int. J. Biochem. Cell Biol. 42, 1672-1680. https://doi.org/10.1016/j.biocel.2010.06.014
  19. Sen, N., Hara, M. R., Kornberg, M. D., Cascio, M. B., Bae, B. I., Shahani, N., Thomas, B., Dawson, T. M., Dawson, V. L., Snyder, S. H. and Sawa, A. (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol. 10, 866-873. https://doi.org/10.1038/ncb1747
  20. Huang, J., Hao, L., Xiong, N., Cao, X., Liang, Z., Sun, S. and Wang, T. (2009) Involvement of glyceraldehydes-3-phosphate dehydrogenase in rotenone induced-cell apoptosis: relevance to protein misfolding and aggregation. Brain Res. 1279, 1-8. https://doi.org/10.1016/j.brainres.2009.05.011
  21. Nakajima, H., Amano, W., Fujita, A., Fukuhara, A., Azuma, Y. T., Hata, F., Inui, T. and Takeuchi, T. (2007) The active site cysteine of the proapoptotic protein glyceraldehydes-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J. Biol. Chem. 282, 26562-26574. https://doi.org/10.1074/jbc.M704199200
  22. Hara, M. R. and Snyder, S. H. (2006) Nitric oxide-GAPDH-Siah: a novel cell death cascade. Cell Mol. Neurobiol. 26, 527-538.
  23. Kibbe, M. R., Li, J., Nie, S., Choi, B. M., Kovesdi, I., Lizonova, A., Billiar, T. R. and Tzeng, E. (2002) Potentiation of nitric oxide-induced apoptosis in p53-/- vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 282, C625-C634. https://doi.org/10.1152/ajpcell.00119.2001
  24. Messmer, U. K. and Brune, B. (1996) Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem. J. 319, 299-305. https://doi.org/10.1042/bj3190299
  25. Han, L. L., Xie, L. P., Li, L. H., Zhang, X. W., Zhang, R. Q. and Wang, H. Z. (2009) Reactive oxygen species production and Bax/Bcl-2 regulation in honokiol-induced apoptosis in human hepatocellular carcinoma SMMC-7721 cells. Environ. Toxicol. Pharmacol. 28, 97-103. https://doi.org/10.1016/j.etap.2009.03.005
  26. Lee, K. H., Kim, K. C., Jung, Y. J., Ham, Y. H., Jang, J. J., Kwon, H., Sung, Y. C., Kim, S. H., Han, S. K. and Kim, C. M. (2001) Induction of apoptosis in p53-deficient human hepatoma cell line by wild-type p53 gene transduction: inhibition by antioxidant. Mol. Cells 12, 17-24.
  27. Jeon, Y. M., Son, B. S. and Lee, M. Y. (2011) Proteomic identification of the differentially expressed proteins in human lung epithelial cells by airborne particulate matter. J. Appl. Toxicol. 31, 45-52. https://doi.org/10.1002/jat.1566
  28. Yego, E. C. and Mohr, S. (2010) siah-1 Protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Muller cells. J. Biol. Chem. 285, 3181-3190. https://doi.org/10.1074/jbc.M109.083907

Cited by

  1. Disruption of the nuclear p53-GAPDH complex protects against ischemia-induced neuronal damage vol.7, pp.1, 2014, https://doi.org/10.1186/1756-6606-7-20