DOI QR코드

DOI QR Code

Regulatory roles of ganglioside GQ1b in neuronal cell differentiation of mouse embryonic stem cells

  • Kwak, Dong-Hoon (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine) ;
  • Jin, Jung-Woo (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Ryu, Jae-Sung (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Ko, Kinram (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Lee, So-Dam (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Lee, Jeong-Woong (Center for Development and Differentiation, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Ji-Su (National Primate Research Center, Korea Institute of Bioscience and Biotechnology) ;
  • Jung, Kyu-Yong (Department of Pharmacology, Wonkwang University School of Medicine) ;
  • Ko, Ki-Sung (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Ma, Jin-Yeul (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine) ;
  • Hwang, Kyung-A (Department of Agrofood Resources, National Academy of Agricultural Science, RDA) ;
  • Chang, Kyu-Tae (National Primate Research Center, Korea Institute of Bioscience and Biotechnology) ;
  • Choo, Young-Kug (Department of Biological Science, College of Natural Sciences, Wonkwang University)
  • Received : 2011.08.11
  • Accepted : 2011.10.04
  • Published : 2011.12.31

Abstract

Gangliosides play an important role in neuronal differentiation processes. The regulation of ganglioside levels is related to the induction of neuronal cell differentiation. In this study, the ST8Sia5 gene was transfected into mESCs and then differentiated into neuronal cells. Interestingly, ST8Sia5 gene transfected mESCs expressed GQ1b by HPTLC and immunofluorescence analysis. To investigate the effects of GQ1b over-expression in neurogenesis, neuronal cells were differentiated from GQ1b expressing mESCs in the presence of retinoic acid. In GQ1b expressing mESCs, increased EBs formation was observed. After 4 days, EBs were co-localized with GQ1b and nestin, and GFAP. Moreover, GQ1b co-localized with MAP-2 expressing cells in GQ1b expressing mESCs in 7-day-old EBs. Furthermore, GQ1b expressing mESCs increased the ERK1/2 MAP kinase pathway. These results suggest that the ST8Sia5 gene increases ganglioside GQ1b and improves neuronal differentiation via the ERK1/2 MAP kinase pathway.

Keywords

References

  1. Lee, D. H., Koo, D. B., Ko, K., Kim, S. M., Jung, J. U., Ryu, J. S., Jin, J. W., Yang, H. J., Do, S. I., Jung, K. Y. and Choo, Y. K. (2007) Effects of daunorubicin on ganglioside expression and neuronal differentiation of mouse embryonic stem cells. Biochem. Biophys. Res. Commun. 362, 313-318. https://doi.org/10.1016/j.bbrc.2007.07.142
  2. Hakomori, S. (1981) Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50, 733-764. https://doi.org/10.1146/annurev.bi.50.070181.003505
  3. Kwak, D. H., Seo, B. B., Chang, K. T. and Choo, Y. K. (2011) Roles of gangliosides in mouse embryogenesis and embryonic stem cell differentiation. Exp. Mol. Med. 43, 379-388. https://doi.org/10.3858/emm.2011.43.7.048
  4. Hakomori, S. (1993) Structure and function of sphingoglycolipids in transmembrane signalling and cell-cell interactions. Biochem. Soc. Trans. 21(Pt 3), 583-595. https://doi.org/10.1042/bst0210583
  5. Ledeen, R. W., Wu, G., Lu, Z. H., Kozireski-Chuback, D. and Fang, Y. (1998) The role of GM1 and other gangliosides in neuronal differentiation. Overview and new finding. Ann. N. Y. Acad. Sci. 845, 161-175. https://doi.org/10.1111/j.1749-6632.1998.tb09669.x
  6. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97-130. https://doi.org/10.1093/glycob/3.2.97
  7. Roisen, F. J., Bartfeld, H., Nagele, R. and Yorke, G. (1981) Ganglioside stimulation of axonal sprouting in vitro. Science 214, 577-578. https://doi.org/10.1126/science.7291999
  8. Yu, R. K. (1994) Development regulation of ganglioside metabolism. Prog. Brain Res. 101, 31-44. https://doi.org/10.1016/S0079-6123(08)61938-X
  9. Skaper, S. D., Leon, A. and Toffano, G. (1989) Ganglioside function in the development and repair of the nervous system. From basic science to clinical application. Mol. Neurobiol. 3, 173-199. https://doi.org/10.1007/BF02935630
  10. Rahmann, H., Probst, W. and Muhleisen, M. (1982) Gangliosides and synaptic transmission. Jpn. J. Exp. Med. 52, 275-286.
  11. Osanai, T., Kotani, M., Yuen, C. T., Kato, H., Sanai, Y. and Takeda, S. (2003) Immunohistochemical and biochemical analyses of GD3, GT1b, and GQ1b gangliosides during neural differentiation of P19 EC cells. FEBS Lett. 537, 73-78. https://doi.org/10.1016/S0014-5793(03)00083-8
  12. Kwak, D. H., Yu, K., Kim, S. M., Lee, D. H., Jung, J. U., Seo, J. W., Kim, N., Lee, S., Jung, K. Y., You, H. K., Kim, H. A. and Choo, Y. K. (2006) Dynamic changes of gangliosides expression during the differentiation of embryonic and mesenchymal stem cells into neural cells. Exp. Mol. Med. 38, 668-676. https://doi.org/10.1038/emm.2006.79
  13. Tsuji, S., Arita, M. and Nagai, Y. (1983) GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines. J. Biochem. 94, 303-306. https://doi.org/10.1093/oxfordjournals.jbchem.a134344
  14. Stavridis, M. P., Lunn, J. S., Collins, B. J. and Storey, K. G. (2007) A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development 134, 2889-2894. https://doi.org/10.1242/dev.02858
  15. Kato, T., Ohtani-Kaneko, R., Ono, K., Okado, N. and Shiga, T. (2005) Developmental regulation of activated ERK expression in the spinal cord and dorsal root ganglion of the chick embryo. Neurosci. Res. 52, 11-19. https://doi.org/10.1016/j.neures.2005.01.001
  16. Stoica, B. A., Movsesyan, V. A., Knoblach, S. M. and Faden, A. I. (2005) Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol. Cell. Neurosci. 29, 355-371. https://doi.org/10.1016/j.mcn.2005.02.009
  17. Maupas-Schwalm, F., Auge, N., Robinet, C., Cambus, J. P., Parsons, S. J., Salvayre, R. and Negre-Salvayre, A. (2004) The sphingomyelin/ceramide pathway is involved in ERK1/2 phosphorylation, cell proliferation, and uPAR overexpression induced by tissue-type plasminogen activator. FASEB J. 18, 1398-1400. https://doi.org/10.1096/fj.03-1123fje
  18. Fukumoto, S., Mutoh, T., Hasegawa, T., Miyazaki, H., Okada, M., Goto, G., Furukawa, K. and Urano, T. (2000) GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation. J. Biol. Chem. 275, 5832-5838. https://doi.org/10.1074/jbc.275.8.5832
  19. Gouni-Berthold, I., Seul, C., Ko, Y., Hescheler, J. and Sachinidis, A. (2001) Gangliosides GM1 and GM2 induce vascular smooth muscle cell proliferation via extracellular signal-regulated kinase 1/2 pathway. Hypertension 38, 1030-1037. https://doi.org/10.1161/hy1101.093104
  20. Jung, J. U., Ko, K., Lee, D. H., Chang, K. T. and Choo, Y. K. (2009) The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp. Mol. Med. 41, 935-945. https://doi.org/10.3858/emm.2009.41.12.099
  21. Ryu, J. S., Ko, K., Lee, J. W., Park, S. B., Byun, S. J., Jeong, E. J. and Choo, Y. K. (2009) Gangliosides are involved in neural differentiation of human dental pulp-derived stem cells. Biochem. Biophys. Res. Commun. 387, 266-271. https://doi.org/10.1016/j.bbrc.2009.07.005
  22. Heo, J. S., Lee, Y. J. and Han, H. J. (2006) EGF stimulates proliferation of mouse embryonic stem cells: involvement of Ca2+ influx and p44/42 MAPKs. Am. J. Physiol. Cell. Physiol. 290, C123-133. https://doi.org/10.1152/ajpcell.00142.2005
  23. Burdon, T., Smith, A. and Savatier, P. (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends. Cell. Biol. 12, 432-438. https://doi.org/10.1016/S0962-8924(02)02352-8
  24. Ferreira, A., Busciglio, J., Landa, C. and Caceres, A. (1990) Ganglioside-enhanced neurite growth: evidence for a selective induction of high-molecular-weight MAP-2. J. Neurosci. 10, 293-302.
  25. Liour, S. S., Kapitonov, D. and Yu, R. K. (2000) Expression of gangliosides in neuronal development of P19 embryonal carcinoma stem cells. J. Neurosci. Res. 62, 363-373. https://doi.org/10.1002/1097-4547(20001101)62:3<363::AID-JNR6>3.0.CO;2-E
  26. Leskawa, K. C. and Hogan, E. L. (1985) Quantitation of the in vitro neuroblastoma response to exogenous, purified gangliosides. J. Neurosci. Res. 13, 539-550. https://doi.org/10.1002/jnr.490130409
  27. Li, M., Pevny, L., Lovell-Badge, R. and Smith, A. (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971-974. https://doi.org/10.1016/S0960-9822(98)70399-9
  28. Kimmelman, A. C., Nunez Rodriguez, N. and Chan, A. M. (2002) R-Ras3/M-Ras induces neuronal differentiation of PC12 cells through cell-type-specific activation of the mitogen-activated protein kinase cascade. Mol. Cell. Biol. 22, 5946-5961. https://doi.org/10.1128/MCB.22.16.5946-5961.2002
  29. Reffas, S. and Schlegel, W. (2000) Compartment-specific regulation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) by ERK-dependent and non-ERK-dependent inductions of MAPK phosphatase (MKP)-3 and MKP-1 in differentiating P19 cells. Biochem. J. 352(Pt 3), 701-708. https://doi.org/10.1042/0264-6021:3520701
  30. Colombo, E., Giannelli, S. G., Galli, R., Tagliafico, E., Foroni, C., Tenedini, E., Ferrari, S., Corte, G., Vescovi, A., Cossu, G. and Broccoli, V. (2006) Embryonic stem-derived versus somatic neural stem cells: a comparative analysis of their developmental potential and molecular phenotype. Stem. Cells 24, 825-834. https://doi.org/10.1634/stemcells.2005-0313
  31. Ladisch, S. and Gillard, B. (1985) A solvent partition method for microscale ganglioside purification. Anal. Biochem. 146, 220-231. https://doi.org/10.1016/0003-2697(85)90419-1

Cited by

  1. Ganglioside GM1 influences the proliferation rate of mouse induced pluripotent stem cells vol.45, pp.12, 2012, https://doi.org/10.5483/BMBRep.2012.45.12.138
  2. Roles of gangliosides in the differentiation of mouse pluripotent stem cells to neural stem cells and neural cells vol.16, pp.2, 2017, https://doi.org/10.3892/mmr.2017.6719