DOI QR코드

DOI QR Code

Effect of Phosphoric Acid on the Electronic and Diffusion Properties of the Anodic Passive Layer Formed on Pb-1.7%Sb Grid of Lead-acid Batteries

  • Received : 2011.02.24
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

Potentiostatic oxidation of Pb-1.7%Sb alloy used in the manufacture of grids of lead-acid batteries over the potential range from -1.0V to 2.3V in 5M $H_2SO_4$ in the absence and the presence of 0.4M $H_3PO_4$ and the self-discharge characteristics of the oxide layer formed is studied by electrochemical impedance spectroscopy (EIS). Depending on the potential value, sharp variations in resistance and capacitance of the alloy are recorded during the oxidation and they can be used for identification of the various substances involved in passive layer. Addition of $H_3PO_4$ is found to deteriorate the insulating properties of the passive layer by the retardation of the formation of $PbSO_4$. $H_3PO_4$ completely inhibits the current and impedance fluctuations recorded in $H_3PO_4$-free solutions in the potential range 0.5 V-1.7 V. These fluctuations are attributed to the occurrence of competitive redox processes that involve the formation of $PbSO_4$, $PbOSO_4$, PbO and $PbO_2$ and the repeated formation and breakdown of the passive layer. Self-discharge experiments indicate that the amount of $PbO_2$ formed in the presence of $H_3PO_4$ is lesser than in the $H_3PO_4$-free solutions. The start of transformation of $PbSO_4$ into $PbO_2$ is greatly shortened. $H_3PO_4$ facilitates the diffusion process of soluble species through the passive layer ($PbSO_4$ and basic $PbSO_4$) but impedes the diffusion process through $PbO_2$.

Keywords

References

  1. S. Tudor, A. Weisstuch, and S. H. Davang, Electrochem. Technol., 5, 21 (1967).
  2. J. Burbank, J. Electrochem. Soc., 111, 1112 (1964). https://doi.org/10.1149/1.2425931
  3. B. K. Mahato, J. Electrochem. Soc., 126, 369 (1979).
  4. E. Voss, J. Power Sources, 24, 171 (1988). https://doi.org/10.1016/0378-7753(88)80113-7
  5. H. A. Laitinen and N. Walkins, Anal. Chem., 47, 1353 (1975).
  6. K. R. Bullock, J. Electrochem. Soc., 126, 1848 (1979). https://doi.org/10.1149/1.2128813
  7. S. Tudor, A. Weisstuch and S.H. Davang, Electrochem. Technol., 4, 406 (1966).
  8. S. Tudor, A. Weisstuch, and S. H. Davang, Electrochem. Technol., 3, 90 (1965).
  9. K. R. Bullock and D. H. McClelland, J. Electrochem. Soc., 124, 1478 (1977). https://doi.org/10.1149/1.2133095
  10. K. R. Bullock, J. Electrochem. Soc., 126, 360 (1979). https://doi.org/10.1149/1.2129044
  11. S. Stemberg, A. Mateescu, V. Branzoi, and L. Apateanu, Electrochim. Acta, 32, 349 (1987). https://doi.org/10.1016/0013-4686(87)85047-8
  12. W. Visscher, J. Power Sources, 1, 257 (1976/77). https://doi.org/10.1016/0378-7753(76)81003-8
  13. H. Doring, K. Wiesener, J. Garche, and P. I. Fischer, J. Power Sources, 38, 261 (1992). https://doi.org/10.1016/0378-7753(92)80115-R
  14. S. Sternberg, V. Branzoi, and L. Apateanu, J. Power Sources, 30, 177 (1990). https://doi.org/10.1016/0378-7753(93)80074-Y
  15. J. Garche, H. Doring, and K. Wiesener, J. Power Sources, 33, 213 (1991). https://doi.org/10.1016/0378-7753(91)85060-A
  16. S. Venugopalan, J. Power Sources, 46, 1 (1993). https://doi.org/10.1016/0378-7753(93)80030-S
  17. S. Venugopalan, J. Power Sources, 48, 371 (1994). https://doi.org/10.1016/0378-7753(94)80033-2
  18. E. Meissner, J. Power Sources, 67, 135 (1997). https://doi.org/10.1016/S0378-7753(97)02506-8
  19. A. Bhattacharya and I. N. Basumallick, J. Power Sources, 382 (2003).
  20. I. Paleskaa, R. Pruszkowska-Drachala, J. Kotowskia, A. Dziudzia, J. D. Milewskic, M. Kopczykc, and A. Czerwinskia, J. Power Sources, 113, 308 (2003). https://doi.org/10.1016/S0378-7753(02)00530-X
  21. S. Li, H. Y. Chen, M. C. Tang, W. W. Wei, Z. W. Xia, Y. M. Wu, W. S. Li and X. Jiang, J. Power Sources, 158, 914 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.028
  22. K. Saminathan, N. Jayaprakash, B. Rajeswari and T. Vasudevan, J. Power Sources, 160, 1410 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.004
  23. I. M. Ismail and A. H. El Abd, Chem. Age India, 34, 393 (1983).
  24. Yu. A. Zinchenko, O. L. Aleksandrova, M. R. Biegul, A. 1. Petrukhova and V. D. Bar'Sukov, Tovarnye Znaki, 48, 1194 (1971).
  25. W. A. Badawy and S. S. El-Egamy, J. Power Sources, 55, 11 (1995). https://doi.org/10.1016/0378-7753(94)02022-U
  26. B.K. Mahato and W.H. Tiedemann, J. Electrochem. Soc., 130, 2139 (1983). https://doi.org/10.1149/1.2119541
  27. L. T. Lam, J. D. Douglas, R. Pilling and D. A. J. Rand, J. Power Sources, 48, 219 (1994). https://doi.org/10.1016/0378-7753(94)80018-9
  28. H. Sanchez, Y. Meas, I. Gonzalez and M. A. Quiroz, J. Power Sources, 32, 43 (1990). https://doi.org/10.1016/0378-7753(90)80032-9
  29. M. Maja and N. Penazzi, J. Power Sources, 22, 1 (1988). https://doi.org/10.1016/0378-7753(88)80001-6
  30. K. Mc Gregor, J. Power Sources, 59, 31 (1996). https://doi.org/10.1016/0378-7753(95)02298-8
  31. D. Pavlov, J. Power Sources, 33, 221 (1991). https://doi.org/10.1016/0378-7753(91)85061-Z
  32. D. Pavlov, A. Dakhouche and T. Rogachev, J. Power Sources, 42, 71 (1993). https://doi.org/10.1016/0378-7753(93)80138-F
  33. D. Pavlov, J. Power Sources, 46, 171 (1993). https://doi.org/10.1016/0378-7753(93)90016-T
  34. T. Rogachev and D. Pavlov, J. Power Sources, 64, 51 (1997). https://doi.org/10.1016/S0378-7753(96)02501-3
  35. N. Chahmanaa, M. Matrakovab, L. Zerroual and D. Pavlov, J. Power Sources, 191, 51 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.066
  36. N. Chahmana, L. Zerroual and M. Matrakova, J. Power Sources, 191, 144 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.115
  37. M. Ghaemi, E. Ghafouri and J. Neshati, J. Power Sources, 157, 550 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.089
  38. A. G. Gad-Allah, H. A. Abd El-Rahman, S. A. Salih and M. Abd El-Galil, Thin Solid Films, 213, 244 (1992). https://doi.org/10.1016/0040-6090(92)90289-N
  39. A. G. Gad-Allah, H. A. Abd El-Rahman, S. A. Salih and M. Abd El-Galil, J. Appl. Electrochem., 22, 571 (1997).
  40. R. Greef, R. Peat, L. M. Peter, D. Pletcher, J. Robinson, In: Instrumental Methods in Electrochemistry, pp. 298-312, Ellis Horwood, London (1990).
  41. A. J. Bard L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd Ed., Ch.10, Wiley, New York (2001).
  42. M. Metikos-Hukovic, R. Babic and S. Brinic, J. Power Sources, 157, 563 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.079
  43. V. Lliev, D. Pavlov, J. Electrochem. Soc., 129, 1393 (1982). https://doi.org/10.1149/1.2124172
  44. J. S. Symanski, B. K. Mahato and K. R. Bullock, J. Electrochem. Soc., 135, 548 (1988). https://doi.org/10.1149/1.2095655
  45. D. Pavlov, I. Balkamov and P. Rachev, J. Electrochem. Soc., 134, 2390 (1987). https://doi.org/10.1149/1.2100210
  46. A. G. Gad-Allah, H. A. Abd El-Rahman, M. Abd El-Galil, J. Appl. Electrochem., 25, 682 (1995).

Cited by

  1. Evaluation of Tolerance of Some Elemental Impurities on Performance of Pb-Ca-Sn Positive Pole Grids of Lead-Acid Batteries vol.3, pp.3, 2012, https://doi.org/10.5229/JECST.2012.3.3.123
  2. Effect of phosphoric acid concentration on conductivity of anodic passive film formed on surface of lead–indium alloy vol.26, pp.3, 2016, https://doi.org/10.1016/S1003-6326(16)64181-X