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A NEW SUBCLASS OF ANALYTIC

FUNCTIONS DEFINED BY CONVOLUTION

S. K. Lee∗ and S. M. Khairnar

Abstract. In the present paper we introduce a new subclass of
analytic functions in the unit disc defined by convolution (fµ)(−1) ∗
f(z), where

fµ = (1− µ)z 2F1(a, b; c; z) + µz(z 2F1(a, b; c; z))
′.

Several interesting properties of the class and integral preserving
properties of the subclasses are also considered.

1. Introduction

Let A denote the class of functions of the form

(1.1) f(z) = z +

∞∑
k=2

akz
k

which are analytic in the open disc U = {z : |z| < 1}. If f and g are
analytic in U , we say that f is subordinate to g, written as f(z) ≺ g(z)
if there exists an analytic function w in U with w(0) = 0 and |w(z)| < 1
for z ∈ U such that f(z) = g(w(z)). Let S∗,K and C be subclasses
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of A consisting of analytic functions which are starlike, convex and
close-to-convex in U , respectively.

Consider M as class of functions ϕ which are analytic and univalent
in U such that ϕ(U) is convex with ϕ(0) = 1 and Re{ϕ(z)} > 0 for
z ∈ U .

Using the subordination principle researchers (cf. [6],[13]) have in-
vestigated the subclasses S∗(ϕ),K(ϕ), and C(ϕ, ψ) of the class A for
ϕ, ψ ∈M defined by

(1.2) S∗(ϕ) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z), z ∈ U

}
,

(1.3) K(ϕ) :=

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ ϕ(z), z ∈ U

}
,

(1.4)

C(ϕ, ψ) :=

{
f ∈ A : ∃ g ∈ S∗(ϕ) such that

zf ′(z)

g(z)
≺ ψ(z), z ∈ U

}
.

For ϕ(z) = ψ(z) = 1+z
1−z in the above definitions, we have the popular

classes S∗,K and C respectively. Furthermore for ϕ(z) = 1+Az
1+Bz , −1 ≤

B < A ≤ 1, we obtain the classes

(1.5) S∗
(
1 +Az

1 +Bz

)
= S∗(A,B) and K

(
1 +Az

1 +Bz

)
= K(A,B).

Let P denote the class of functions of the form

p(z) = 1 + p1z + p2z
2 + · · ·

analytic in U and Re(p(z)) > 0. Denote by Dλ : A→ A, the operator
defined by

(1.6) Dλf(z) =
z

(1− z)λ+1
∗ f(z) (λ > −1).

The operator Dλf is called the Ruscheweyh derivative of f of order λ.
It is obvious that D0f = f,D1f = zf ′ and

(1.7) Dαf(z) =
z(zα−1f(z))(α)

α!
(α ∈ N0 = N ∪ {0}).
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Recently K. I. Noor [16], K. I. Noor and M. A. Noor [17] have defined
as integral operator In : A→ A, analogous to Dλf as follows.

Let fn(z) =
z

(1−z)n+1 , n ∈ N0 and f
(−1)
n (z) be defined such that

(1.8) fn(z) ∗ f (−1)
n (z) =

z

(1− z)2
.

Then

(1.9) Inf(z) = f (−1)
n (z) ∗ f(z) =

[
z

(1− z)n+1

](−1)

∗ f(z) (f ∈ A).

We notice that I0f(z) = zf ′(z) and I1f(z) = f(z). The operator In
is called the Noor integral of n-th order of f (see [3], [12]), which is
very important operator used in defining several subclasses of analytic
functions.

For real or complex numbers a, b, c different from 0,−1,−2, · · · , the
hypergeometric series is defined by

(1.10) 2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k(1)k

zk

where (v)k is the Pochhammer symbol defined in terms of Gamma
function by

(1.11) (v)k =
Γ(v + k)

Γ(v)
= v(v + 1) · · · (v + k − 1)

for k = 1, 2, 3, · · · and (v)0 = 1.
We notice that the series (1.10) converges absolutely for all z ∈ U, so

that it represents an analytic function in U . In particular z 2F1(1, a; c; z)
= ϕ(a, c; z) which is the incomplete beta function. Also ϕ(a, 1; z) =

z
(1−z)a , where ϕ(2, 1; z) is the Koebe function.

N. Shukla and P. Shukla [22] studied the mapping properties of fµ
function defined by

(1.12)
fµ(a, b, c)(z)

= (1− µ)z 2F1(a, b; c; z) + µz(z 2F1(a, b; c; z))
′ (µ ≥ 0).
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Kim and Shon [11] defined a linear operator Lµ : A→ A defined by

Lµ(a, b, c)(f(z)) = fµ(a, b, c)(z) ∗ f(z).

We now define a function (fµ(a, b, c)(z))
(−1) by

(1.13)
fµ(a, b, c)(z) ∗ (fµ(a, b, c)(z))(−1)

=
z

(1− z)λ+1
(µ ≥ 0, λ > −1)

and introduce the linear operator

(1.14) Iλµ(a, b, c)f(z) = (fµ(a, b, c)(z))
(−1) ∗ f(z).

For µ = 0 in (1.13) we obtain the operator introduced by K. I. Noor
[15]. For λ > −1 we have

(1.15)
z

(1− z)λ+1
=

∞∑
k=0

(λ+ 1)k
k!

zk+1 (z ∈ U).

Using (1.10) and (1.15) in (1.13), we get

(1.16)

∞∑
k=0

(µk + 1)(a)k(b)k
(c)k(1)k

zk+1 ∗ (fµ(a, b, c)(z))(−1)

=
∞∑
k=0

(λ+ 1)k
k!

zk+1.

Thus (fµ(a, b, c)(z))
(−1) has the form

(1.17) (fµ(a, b, c)(z))
(−1) =

∞∑
k=0

(λ+ 1)k(c)k
(µk + 1)(a)k(b)k

zk+1 (z ∈ U).

Equation (1.14) now implies that

(1.18) Iλµ (a, b, c)f(z) = z +
∞∑
k=1

(λ+ 1)k(c)k
(µk + 1)(a)k(b)k

ak+1z
k+1.
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In particular

(1.19) Iλ0 (a, λ+ 1, a)f(z) = f(z), I10 (a, 1, a)f(z) = zf ′(z).

It can be easily shown that

(1.20) z(Iλµ (a, b, c)f(z))
′ = (λ+ 1)Iλ+1

µ (a, b, c)f(z)− λIλµ (a, b, c)f(z),

(1.21)
z(Iλµ (a+ 1, b, c)f(z))′

= aIλµ (a, b, c)f(z)− (a− 1)Iλµ (a+ 1, b, c)f(z).

By using the operator Iλµ (a, b, c), we introduce the following classes of
analytic functions for ϕ, ψ ∈M, λ > −1, µ ≥ 0:

Sλ
µ(a, b, c)(ϕ) := {f ∈ A : Iλµ (a, b, c)f(z) ∈ S∗(ϕ)},

(1.22) Kλ
µ(a, b, c)(ϕ) := {f ∈ A : Iλµ (a, b, c)f(z) ∈ K(ϕ)},

Cλ
µ(a, b, c)(ϕ, ψ)

:=

{
f ∈ A : ∃g(z) ∈ Sλ

µ(a, b, c)(ϕ) s.t.
z(Iλµ (a, b, c)f(z))

′

Iλµ (a, b, c)g(z)
≺ ψ(z), z ∈ U

}
.

We note that

(1.23) f(z) ∈ Kλ
µ(a, b, c)(ϕ) if and only if zf ′(z) ∈ Sλ

µ(a, b, c)(ϕ).

In particular

Sλ
µ(a, b, c)

(
1 +Az

1 +Bz

)
= Sλ

µ(a, b, c, A,B) (−1 ≤ B < A ≤ 1),

Kλ
µ(a, b, c)

(
1 +Az

1 +Bz

)
= Kλ

µ(a, b, c, A,B) (−1 ≤ B < A ≤ 1).

In this paper we investigate the inclusion properties of the class
Sλ
µ(a, b, c)(ϕ), K

λ
µ(a, b, c)(ϕ) and C

λ
µ(a, b, c)(ϕ, ψ). Notice that

Sλ
0 (a, λ+ 1, a)

(
1 + z

1− z

)
= S∗, Kλ

0 (a, λ+ 1, a)

(
1 + z

1− z

)
= K

Cλ
0 (a, λ+ 1, a)

(
1 + z

1− z

)
= C.
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2. Inclusion properties involving the operator Iλµ(a, b, c)

The following lemmas will be required in our investigation.

Lemma 2.1([14]). Let ϕ(z) be convex univalent in U and E ≥ 0.
Suppose B(z) is analytic in U with Re B(z) ≥ E. If g ∈ P is analytic
in U , then

(2.1) Ez2g′′(z) +B(z)zg′(z) + g(z) ≺ ϕ(z) (z ∈ U)

implies
g(z) ≺ ϕ(z) (z ∈ U).

Lemma 2.2([20]). Let f ∈ K and g ∈ S∗. Then for every analytic
function Q in U ,

(2.2)
(f ∗Qg)
f ∗ g

(U) ⊂ COQ(U),

where COQ(U) denotes the closed convex hull of Q(U).

Lemma 2.3([19]). Let β, γ be complex numbers. Let ϕ(z) be con-
vex univalent in U with ϕ(0) = 1 and Re[βϕ(z) + γ] > 0, z ∈ U and
q(z) ∈ A with q(z) ≺ ϕ(z), z ∈ U . If p(z) ∈ P is analytic in U , then

(2.3) p(z) +
zp′(z)

βq(z) + γ
≺ ϕ(z) (z ∈ U)

implies
p(z) ≺ ϕ(z) (z ∈ U).

Lemma 2.4([7]). Let δ, η be complex numbers. For ϕ(z) convex
univalent in U with ϕ(0) = 1 and Re[δϕ(z)+η] > 0, z ∈ U . If p(z) ∈ P
is analytic in U , then

(2.4) p(z) +
zp′(z)

δp(z) + η
≺ ϕ(z) (z ∈ U)

implies
p(z) ≺ ϕ(z) (z ∈ U).
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Theorem 2.5. Let ϕ(z) be convex and univalent in U with ϕ(0) = 1
and Re ϕ(z) ≥ 0. Then

Sλ+1
µ (a, b, c)(ϕ) ⊂ Sλ

µ(a, b, c)(ϕ)

for λ > −1, µ ≥ 0.

Proof. Let f(z) ∈ Sλ+1
µ (a, b, c)(ϕ) and

(2.5) p(z) =
z(Iλµ (a, b, c)f(z))

′

Iλµ (a, b, c)f(z)

where p(z) ∈ P . Using (1.20) in (2.5) and differentiating we get

z(Iλ+1
µ (a, b, c)f(z))′

Iλ+1
µ (a, b, c)f(z)

= p(z) +
zp′(z)

(λ+ 1)q(z)

where

q(z) =
Iλ+1
µ (a, b, c)f(z)

Iλµ (a, b, c)f(z)

and q(z) ≺ ϕ(z). Hence by applying Lemma 2.3, we obtain

z(Iλµ (a, b, c)f(z))
′

Iλµ (a, b, c)f(z)
≺ ϕ(z).

In view of (1.22) we get f(z) ∈ Sλ
µ(a, b, c)(ϕ). �

Theorem 2.6. Let ϕ(z) be convex and univalent in U with ϕ(0) = 1
and Re ϕ(z) ≥ 0. Then

Sλ
µ(a, b, c)(ϕ) ⊂ Sλ

µ(a+ 1, b, c)(ϕ)

for λ > −1, µ ≥ 0.

Proof. Applying the same technique as in proof of Theorem 2.5 and
using (1.21) with Lemma (2.4) we obtain the required result. �

Taking ϕ(z) = (1 + Az)/(1 + Bz) (−1 ≤ B < A ≤ 1) in Theorem
2.5 and Theorem 2.6 we obtain the following result.
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Corollary 2.7. For λ > −1, µ ≥ 0 and Re a > 1

Sλ+1
µ (a, b, c, A,B) ⊂ Sλ

µ(a, b, c, A,B),

Sλ
µ(a, b, c, A,B) ⊂ Sλ

µ(a+ 1, b, c, A,B).

Further if ϕ(z) = 1+z
1−z in Theorem 2.5 and Theorem 2.6 we obtain

the following result.

Corollary 2.8. For λ > −1, µ ≥ 0 and Re a > 0

Iλ+1
µ (a, b, c)f(z) ∈ S∗ implies Iλµ (a, b, c)f(z) ∈ S∗.

Similarly

Iλµ(a, b, c)f(z) ∈ S∗ implies Iλµ(a+ 1, b, c)f(z) ∈ S∗.

Corollary 2.9. For λ > −1, µ ≥ 0 and Re a > 0 we have

Kλ+1
µ (a, b, c)(ϕ) ⊂ Kλ

µ(a, b, c)(ϕ),

Kλ
µ(a, b, c)(ϕ) ⊂ Kλ

µ(a+ 1, b, c)(ϕ).

Proof.

f(z) ∈ Kλ+1
µ (a, b, c)(ϕ) ⇔ zf ′(z) ∈ Sλ+1

µ (a, b, c)(ϕ)

⇒ zf ′(z) ∈ Sλ
µ(a, b, c)(ϕ)

⇔ Iλµ (a, b, c)(zf
′(z)) ∈ S∗(ϕ)

⇔ z(Iλµ(a, b, c)f(z))
′ ∈ S∗(ϕ)

⇔ Iλµ (a, b, c)f(z) ∈ K(ϕ)

⇔ f(z) ∈ Kλ
µ(a, b, c)(ϕ).

The second relation can be proved similarly. �
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Theorem 2.10. Let ϕ(z) be convex univalent in U with ϕ(0) = 1
and Re ϕ(z) ≥ 0. If f(z) ∈ A satisfies the condition

f(z) ∈ Sλ
µ(a, b, c)(ϕ)

then
F (z) ∈ Sλ

µ(a, b, c)(ϕ)

where F (z) is the integral operator defined by

(2.6) F (z) =
c+ 1

zc

∫ z

0

tc−1f(t)dt (c ≥ 0).

Proof. From (2.6) we have

(2.7) z(Iλµ (a, b, c)F (z))
′ = (c+ 1)Iλµ(a, b, c)f(z)− cIλµ(a, b, c)F (z).

Let

p(z) =
z(Iλµ (a, b, c)F (z))

′

Iλµ (a, b, c)F (z)

where p(z) ∈ P . Using (2.7), we get

(2.8) p(z) + c =
(c+ 1)Iλµ (a, b, c)f(z)

Iλµ (a, b, c)F (z)
.

Differentiating both sides of (2.8) logarithmically, we get

p(z) +
zp′(z)

c+ p(z)
=
z(Iλµ(a, b, c)f(z))

′

Iλµ(a, b, c)f(z)
≺ ϕ(z)

by hypothesis. Now applying Lemma 2.4 we obtain

z(Iλµ (a, b, c)F (z))
′

Iλµ (a, b, c)F (z)
≺ ϕ(z).

That is F (z) ∈ Sλ
µ(a, b, c)(ϕ). �

For ϕ(z) = (1 + Az)/(1 + Bz) (−1 ≤ B < A ≤ 1) in Theorem 2.10
we obtain the following result.
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Corollary 2.11. For λ > −1, µ ≥ 0 and c > 0, if f(z) ∈
Sλ
µ(a, b, c, A,B), then F (z) ∈ Sλ

µ(a, b, c, A,B) where F (z) is given by
(2.6).

Corollary 2.12. For λ > −1, µ ≥ 0 and c ≥ 0, if f(z) ∈
Kλ

µ(a, b, c)(ϕ), then F (z) ∈ Kλ
µ(a, b, c)(ϕ).

Proof. We have

f(z) ∈ Kλ
µ(a, b, c)(ϕ) ⇔ zf ′(z) ∈ Sλ

µ(a, b, c)(ϕ)

⇒ z(F (z))′ ∈ Sλ
µ(a, b, c)(ϕ)

⇔ F (z) ∈ Kλ
µ(a, b, c)(ϕ).

�

Theorem 2.13. Let f(z) ∈ A. Then

Cλ+1
µ (a, b, c, ϕ, ψ) ⊂ Cλ

µ(a, b, c, ϕ, ψ)

for λ ≥ 0, µ ≥ 0.

Proof. Let f(z) ∈ Cλ+1
µ (a, b, c, ϕ, ψ). Then by definition

z(Iλ+1
µ (a, b, c, ϕ, ψ)f(z))′

Iλ+1
µ (a, b, c, ϕ, ψ)g(z)

≺ ψ(z)

for some g(z) ∈ Sλ+1
µ (a, b, c)(ϕ). Let

(2.9) h(z) =
z(Iλµ (a, b, c)f(z))

′

Iλµ (a, b, c)g(z)
and

(2.10) H(z) =
z(Iλµ(a, b, c)g(z))

′

Iλµ (a, b, c)g(z)
.

Notice that h(z), H(z) ∈ P . By Theorem 2.5 g(z) ∈ Sλ
µ(a, b, c)(ϕ) and

so ReH(z) > 0. We also note that (2.9) implies

(2.11) z(Iλµ(a, b, c)f(z))
′ = (Iλµ(a, b, c)g(z))h(z).
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Differentiating both sides of (2.11) gives

(2.12)
z(z(Iλµ (a, b, c)f(z))

′)′

Iλµ (a, b, c)g(z)
= H(z)h(z) + zh′(z).

Using identity (1.20), we get

z(Iλ+1
µ (a, b, c)f(z))′

Iλ+1
µ (a, b, c)g(z)

=
Iλ+1
µ (a, b, c)(zf ′(z))

Iλ+1
µ (a, b, c)g(z)

=
z(Iλµ (a, b, c)(zf

′(z)))′ + λIλµ(a, b, c)(zf
′(z))

z(Iλµ(a, b, c)g(z))
′ + λIλµ(a, b, c)g(z)

=

z(Iλ
µ (a,b,c)(zf ′(z)))′

Iλ
µ (a,b,c)g(z)

+
λIλ

µ (a,b,c)(zf ′(z))

Iλ
µ (a,b,c)g(z)

z(Iλ
µ (a,b,c)g(z))′

Iλ
µ (a,b,c)g(z)

+ λ

=
H(z)h(z) + zh′(z) + λh(z)

H(z) + λ

= h(z) +
zh′(z)

H(z) + λ
≺ ψ(z).

Now from Lemma 2.1, for E = 0 and B(z) = 1
H(z)+λ with Re(B(z)) =

1
|H(z)+λ|2Re (H(z) + λ) > 0. We get h(z) ≺ ψ(z). In view of (2.9) we

get f(z) ∈ Cλ
µ(a, b, c, ϕ, ψ). �

Theorem 2.14. Let f ∈ A. Then

Cλ
µ(a, b, c, ϕ, ψ) ⊂ Cλ

µ(a+ 1, b, c, ϕ, ψ)

λ ≥ 0, µ ≥ 0.

Proof. By using arguments similar to the proof of Theorem 2.13, we
get

h(z) +
zh′(z)

H(z) + a− 1
≺ ψ(z)

for h(z) =
z(Iλ

µ (a+1,b,c)f(z))′

Iλ
µ (a+1,b,c)g(z)

and H(z) =
z(Iλ

µ (a+1,b,c)g(z))′

Iλ
µ (a+1,b,c)g(z)

belonging to

P . Taking E = 0 and B(z) = 1
H(z)+a−1 with

Re(B(z)) =
1

|H(z) + a− 1|2
Re(H(z) + a− 1) > 0.

Now applying Lemma 2.1 we obtain the required result. �
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Theorem 2.15. If f(z) ∈ Cλ
µ(a, b, c, ϕ, ψ) then F (z) ∈ Cλ

µ(a, b, c, ϕ, ψ)
for c ≥ 0, where F (z) is given by (2.6).

Proof. Employing same technique as in proof of Theorem 2.13, we
get

zh′(z)

H(z) + c
+ h(z) ≺ ψ(z)

for h(z) =
z(Iλ

µ (a,b,c)F (z))′

Iλ
µ (a,b,c)g(z)

and H(z) =
z(Iλ

µ (a,b,c)g(z))′

Iλ
µ (a,b,c)g(z)

belonging to P .

Taking E = 0 and B = 1
H(z)+c , we obtain

Re(B(z)) =
1

|H(z) + c|2
Re(H(z) + c) > 0.

Now by Lemma 2.1 we derive the required result. �

3. Inclusion properties by convolution

In this Section we show that the classes Sλ
µ(a, b, c)(ϕ),K

λ
µ(a, b, c)(ϕ)

and Cλ
µ(a, b, c, ϕ, ψ) are invariant under convolution with convex func-

tions.

Theorem 3.1. Let a, b > 0, c ∈ IR \ Z−
0 , ϕ, ψ ∈ M and let g ∈ K.

Then
(i) f ∈ Sλ

µ(a, b, c)(ϕ) ⇒ g ∗ f ∈ Sλ
µ(a, b, c)(ϕ),

(ii) f ∈ Kλ
µ(a, b, c)(ϕ) ⇒ g ∗ f ∈ Kλ

µ(a, b, c)(ϕ),

(iii) f ∈ Cλ
µ(a, b, c, ϕ, ψ) ⇒ g ∗ f ∈ Cλ

µ(a, b, c, ϕ, ψ).

Proof. (i) Let f ∈ Sλ
µ(a, b, c)(ϕ), then

z(Iλ
µ (a,b,c)f(z))′

Iλ
µ (a,b,c)f(z)

= ϕ(w(z)).

Consider the following

z(Iλµ (a, b, c)(g ∗ f)(z))′

Iλµ (a, b, c)(g ∗ f)(z)
=
g(z) ∗ z(Iλµ(a, b, c)f(z))′

g(z) ∗ Iλµ (a, b, c)f(z)

(3.1)

=
g(z) ∗ ϕ(w(z))Iλµ(a, b, c)f(z)

g(z) ∗ Iλµ(a, b, c)f(z)
.
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Using Lemma 2.2, we conclude that

{g ∗ ϕ(w)Iλµ (a, b, c)f}
{g ∗ Iλµ (a, b, c)f}

(U) ⊂ CO(ϕ(U)) ⊂ ϕ(U)

since ϕ is convex univalent and Iλµ (a, b, c)f ∈ S∗(ϕ). By definition of
subordination we conclude that (3.1) is subordinated to ϕ in U and so
g ∗ f ∈ Sλ

µ(a, b, c)(ϕ).

(ii) Let f ∈ Kλ
µ(a, b, c)(ϕ). Then by (1.23), zf ′(z) ∈ Sλ

µ(a, b, c)(ϕ)

and hence by (i) g ∗ zf ′(z) ∈ Sλ
µ(a, b, c)(ϕ). Notice that

g(z) ∗ zf ′(z) = z(g ∗ f)′(z).

Now applying (1.23) again, we get g ∗ f ∈ Kλ
µ(a, b, c)(ϕ).

(iii) Let f ∈ Cλ
µ(a, b, c, ϕ, ψ). Then there exists q ∈ Sλ

µ(a, b, c)(ϕ)
such that

z(Iλµ(a, b, c)f(z))
′

Iλµ (a, b, c)q(z)
≺ ψ(z).

Therefore

(3.2) z(Iλµ(a, b, c)f(z))
′ = ψ(w(z))Iλµ(a, b, c)q(z) (z ∈ U)

where w is an analytic function in U with |w(z)| < 1 (z ∈ U) and
w(0) = 0.

In view of Iλµ (a, b, c)q ∈ S∗(ϕ), we have

z(Iλµ (a, b, c)(g ∗ f)(z))′

g ∗ Iλµ (a, b, c)q
=
g(z) ∗ z(Iλµ (a, b, c)f(z))′

g(z) ∗ Iλµ (a, b, c)q(z)

=
g(z) ∗ ψ(w(z))Iλµ (a, b, c)q(z)

g(z) ∗ Iλµ (a, b, c)q(z)
≺ ψ(z) (z ∈ U).

Thus (iii) is proved. �

Next, we investigate the following operators ([18], [21]) defined by

(3.3) η1(z) =
∞∑
k=1

1 + c

k + c
zk (Re c ≥ 0; z ∈ U),
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(3.4) η2(z) =
1

1− x
log

[
1− xz

1− z

]
(log 1 = 0; |x| ≤ 1, x ̸= 1; z ∈ U).

It is known that the operators η1 and η2 are convex univalent in U([1],
[21]). Therefore, we have the following results which immediately fol-
low from Theorem 3.1.

Corollary 3.2. Let a, b > 0; c ∈ IR \ Z−
0 ; ϕ, ψ ∈ M and let

ηi (i = 1, 2) be as defined by (3.3) and (3.4). Then
(i) f ∈ Sλ

µ(a, b, c)(ϕ) ⇒ ηi ∗ f ∈ Sλ
µ(a, b, c)(ϕ),

(ii) f ∈ Kλ
µ(a, b, c)(ϕ) ⇒ ηi ∗ f ∈ Kλ

µ(a, b, c)(ϕ),

(iii) f ∈ Cλ
µ(a, b, c, ϕ, ψ) ⇒ ηi ∗ f ∈ Cλ

µ(a, b, c, ϕ, ψ).
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