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A STUDY ON THE CONTRACTED ES CURVATURE
TENSOR IN ¢ — ESX,

IN Ho HwANG

ABSTRACT. This paper is a direct continuation of [1]. In this paper
we derive tensorial representations of contracted ES curvature ten-
sors of g — ESX,, and prove several generalized identities involving
them. In particular, a variation of the generalized Bianchi’s identity
in g — ESX,,, which has a great deal of useful physical applications,
is proved in Theorem (2.9).

1. Preliminaries

This paper is a direct continuation of our previous paper [1], which
will be denoted by I in the present paper. All considerations in this paper
are based on our results and symbolism of I([1],[2],[3],[4],[5].[6],[7],[8],[9])-
Whenever necessary, these results will be quoted in the text. In this
section, we introduce a brief collection of basic concepts, notations, and
results of I, which are frequently used in the present paper.

(a) Let X,, be a generalized n-dimensional Riemannian manifold re-
ferred to a real coordinate system ¥, which obeys the coordinate
transformations ¥ — ¥ for which

ox’'

In n — g — UFT the manifold X, is endowed with a real nonsym-
metric tensor g,,, which may be decomposed into its symmetric
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part hy, and skew-symmetric part ky,:

(12) 9 = h)\,u + k)\u-

where

(13) g =det(ga,) #0, b=det(h,) #0, &= det(kyy).

In virtue of (1.3) we may define a unique tensor h by
(1.4) hauhN = 6.

which together with hy, will serve for raising and/or lowering in-
dices of tensors in X,, in the usual manner. There exists a unique
tensor ¢ satisfying

(1.5) T =gt g” =0

It may be also decomposed into its symmetric part *h* and skew-

symmetric part *k*:

(1.6) *g/\u — *h)‘y—i-*]{])‘y.
The manifold X,, is connected by a general real connection I'y",
with the following transformation rule:

ox” (81"8 ox” 0z )

— (0%
ox®

(1.7) IV

o™ 9z P 7 9xN 9z
It may also be decomposed into its symmetric part Ay”, and its
skew-symmetric part S),”, called the torsion tensor of I'\¥, :

(L8) I\ =M+ Sy" A= Lo S’ =Tp"y-
A connection I'y”, is said to be Einstein if it satisfies the following
system of Einstein’s equations:

(1.9) Ouwdng — In"wfap — Tw®ugra = 0.
or equivalently

(1.10) D,gxu = 255, 9ra-

where D, is the symbolic vector of the covariant derivative with
respect to I'\”,,. In order to obtain g, involved in the solution
for I'\”,, in (1.9), certain conditions are imposed. These conditions
may be condensed to

(L11)  Sy=5a"=0, Ry =0y, R =0.
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where Y, is an arbitrary vector, and
(1.12) R’ = 200315 ) + Ta" L3 %)

If the system (1.10) admits a solution I'y”,, it must be of the
form (Hlavaty, 1957)

(1.13) Ty, = { Zu } + Sy’ A+ U s

where Uy, = 2h”aSa(,\5k:M)ﬂ and { Z\,u } are Christoffel symbols

defined by hy,,.

(b) Some notations and results The following quantities are frequently
used in our further considerations:

(1.14) g=9 k=t

b b
(1'15) KP:k[alaleQQQ"'kap]ap, <p:()’1,2’...)’

(1.16) Ok =6%, P =k Vg (p=1,2,---).
In X, it was proved in [5] that
(1.17) Ko =1, K, =k if nis even, and K, = 0 if p is odd.
(1.18) g = h(l+K +Ko+-+K,)
or g = 1+K1+Ky+---+K,.

n—o

(1.19) YK, Y =0 (p=0,1,2,---).

s=0

We also use the following useful abbreviations for an arbitrary
vector Y, for p=1,2,3,---:

(1.20) Py, ==Y oY,
(1.21) Pyv =p=1 v ye

(c) n-dimensional £'S manifold ESX,,
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In this subsection, we display an useful representation of the £'S con-
nection in n-g-UFT.

DEFINITION 1.1. A connection I'y¥,, is said to be semi-symmetric if
its torsion tensor Sy,” is of the form

(1.22) S’ = 200X
for an arbitrary non-null vector X,,.

A connection which is both semi-symmetric and Einstein is called
an ES connection. An n-dimensional generalized Riemannian manifold
X, on which the differential geometric structure is imposed by gy, by
means of an ES connection, is called an n-dimensional E.S manifold.
We denote this manifold by ¢ — EFSX,, in our further considerations.

THEOREM 1.2. Under the condition (1.22), the system of equations
(1.10) is equivalent to

v v v v
(1.23) )Y, = { o } + 2K X,y + 265X,
Proof. Substituting (1.22) for Sy,” into (1.13), we have the represen-
tation (1.23). O

THEOREM 1.3. In g — ESX,, the following relations hold for p,q =
1,2,3,--- :

(1.24) Sy = (1 —n)Xy,

(1.25) Uy = %&\lng,

(1.26) P Sy = (1 —n)PU,,

(1.27) P, DX =0 if ptqg—1 is odd,
(1.28) DX, = VX,

(1.29)

1.29 DXy = VX = X,

(1.30)  VpUy =0,  DpU, =20pX, =29X,X,,

where V, is the symbolic vector of the covariant derivative with respect
to the Christoffel symbols defined by hy,,.
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THEOREM 1.4. In g — ESX,, under the present conditions, the ES
curvature tensor R,,,,\" may be given by

(131) Rw‘u)\y = Lw#Ay + wa)\y + Nw,uky7

ot =2 (o b {ah H 5 D),

(1.33) Meyn” = 2(050p, X + 01,V Xa 4+ VU0,

where

(1.32

~—

(1.34) Nun” = 2(68, X0 X5 +*) Xaki,” Xoy)-

THEOREM 1.5. (Generalized Bianchi’s identity in g— ESX,, ) Un-
der the present conditions, the ES curvature tensor R,,,,\" of g — ESX,,
satisfies the following identity:

(1.35) DieRopn” = =4X (e Loy” + O

where

1
(136) Ouwm’ = HX0.X, + XV,X,

+ X VLU + X6 X X0 +%) XXk X,

2. The contracted ES curvature tensors in g — ESX,,

This section is devoted to the study of the contracted n-dimensional
ES curvature tensors, defined by the ES connection in g-UFT under the
present conditions, and of some useful identities involving them.

The tensors

(2.1) R\ = Ropn”, Vi = Rupa”

are called the first and second contracted ES curvature tensors of the
ES connection I'y¥,, respectively. We see in the following two theorems
that they appear as functions of the vectors X, Sy, Uy, and hence also
as functions of gy, and its first two derivatives in virtue of (1.24, 25) and
(1.31).
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THEOREM 2.1. The first contracted ES curvature tensor R, in g —
ESX, may be given by

(2.2) R#)\ = LH)\ + Qa[MX)\] + VuT)\ — VQUO‘M
—+ (n—l)XMX)\—l—UHU/\,
where
(2.3) Ly = Lo,
(2.4) T)\MV :S)\MV—FUV)\M, T\ =Ty = S\ + Uy.

Proof. Putting w = v = a in (1.31) and making use of (2.3), we have

(2.5) Rux = Lyx + Moun®™ + Nopn.
In virtue of (1.24,25), it follows from (1.33) that
(2.6) My = 20X+ (1 —n)V, X\ +V, U\ =V U
= 20, Xy + VT — VU0
On the other hand, in virtue of (1.25) the relation (1.34) gives
2.7 Now® = (n—1X,. X+ XP X\ =@ X3 X, ko”
= (n—1)X, X\ + UUy

Our assertion follows immediately from (2.5), (2.6) and (2.7).
[l

THEOREM 2.2. The second contracted ES curvature tensor V,,, in
g— ESX,, is a curl of the vector Sy. That is,

(2.8) Viou = 20,5,
Proof. Putting A = v = « in (1.31), we have
(2.9) Vi = Lpa™ + Mupa™ + Nopa™-

In virtue of (1.11) and (1.24,25, 30), the relations (1.32,33,34) give
quaa = quaa =0
Mepo® = 2(1 = n)0 X, + 2V, Uy = 2(1 — n)0, Xy = 20,5,
which together with (2.9) proves our assertion. O
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THEOREM 2.3. The tensor R, is symmetric when n = 3.

Proof. The relation (2.2) may be written as

(210) RHA = L#)\ + (3 - H)V#XA - 2V(MX>\) + VHU)\
—VQUQMA -+ (n — 1)XMX)\ + UMU)\,
where use has been made of (1.24,29) and (2.4). Hence, in virtue of
(1.29,30) we have Ry, = 0if and only if (3—n)V [, Xy = (3—n)0,, Xy =
0.
[l

REMARK 2.4. In the proof of the Theorem (2.3), we excluded the case
that 0, X, = 0, because we assumed that X is not a gradient vector
in the definition of semi-symmetric connection in (1.22). In fact, the
assumption that X is not a gradient vector is essential in the discussions
of the field equations in g — ESX,,.

THEOREM 2.5. The contracted ES curvature tensors in g— ESX,, are
related by

(2.11) ZR[W\] = 48[MX)\] + Vu/\.

Proof. In virtue of (1.24,29,30), the relation (2.11) may be proved
from (2.10) as in the following way:

(2.12) QR[;M] = 2(3 - n)a[uX,\]
= 2(1- n)a[uX,\] + 40, X
= 20,5y + 49, Xy

= Vi +40,Xy.
O
Our next task is to obtain a generalization of the classical identity
(2.13) VB, =0,
where

(63 v v 1 v
(2.14) L=h""Lg, B\ = L," = 50;L.
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REMARK 2.6. The tensor E,” is called the Einstein tensor. This
tensor has a great deal of applications in physics. It is of fundamental
importance since its divergence vanishes identically as we see in (2.13).

In our further considerations, the quantities
1
(2.15) R = h"‘ﬁRaﬂ, G, =R, — §6ZR

will be referred to ES curvature invariant and ES FEinstein tensor of
g—ESX,, respectively. The tensor G,” is the generalized concept of E,”.
First of all, we need the following two theorems in order to generalize
the identity (2.13) in g — ESX,, .

THEOREM 2.7. In g — ESX,,, we have
(2.16) D,hM = 2X gl —2X, hM.

Proof. Substituting (1.22) into (1.10) for S,,,” and making use of (1.2)
and (1.21), the relations (2.16) follows as in the following way:

D™ = 28, gg)y, B hH°
= 2(8), Xa)gpy + 01, Xp Gory )P RHP
= 2(gs1wXa) + gal X)) WD
= 2XQAgh 92X, nM.

THEOREM 2.8. In g — ESX,,, we have
(2.17) R=L+(1-n)V,X* + V,U"+(n—-1X
+ U -V, U3,
(2.18) DoR,“ = VR, + (Uy —nXo)R,* + RX,, — U*R,,,
where
(2.19) X =X, X, U=U0,U0"

Proof. In virtue of (2.14),(2.15) and (1.24,29), the representation
(2.17) follows from (2.2). On the other hand, the representation (2.18)
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may be proved as in the following way in virtue of (1.13), (1.22), (1.24), (1.25)
and (2.15):

D.R,* = 0,R,*+T4, R, —T Rs"
= V.R. "+ (Ss+Us)R," — S’ Rg® — UP .o Rs"
= VoR,+ (1= n)Xo + UsR," 426, X,y Rs" — U o R
= VoR "+ Uy —nXa)R, "+ RX, — U’ Rg”
= VoR,*+ (U, —nX,)R,* + RX, — U"R,,

Now we are ready to prove the following generalization of (2.13).

THEOREM 2.9. (A variation of the generalized Bianchi’s identity in
g— ESX,,). The ES Einstein tensor G,” satisfies the following identity
ing— ESX,:

1
(220) DaGpa = P,u, - éaﬂQJ
where
(221)P, = Vo(R,”—L,)+ (Uys—nXy)R," + RX, —U“R,,,
(222)Q = (1—n)V X +V U +U+ (n—1)X —U,U" 5.
Proof. The relation (2.15) gives
1

(2.23) D.G," = Dy(R," — 552‘}3)

=V, (R, —L,”)+ (Uy —nXo)R,* + RX,, — U*R,,

1
- 5au[(l —n)Vo X+ VU +U+ (n—1)X —U,U" 5.

The proof of the identity (2.20) immediately follows by substituting
(2.17,18) into (2.23) and making use of (2.21, 22). O
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