SEMIGROUP RINGS AS H-DOMAINS

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain, S be a torsion-free grading monoid such that the quotient group of S is of type $(0,0,0,\ldots)$, and D[S] be the semigroup ring of S over D. We show that D[S] is an H-domain if and only if D is an H-domain and each maximal t-ideal of S is a v-ideal. We also show that if \mathbb{R} is the field of real numbers and if Γ is the additive group of rational numbers, then $\mathbb{R}[\Gamma]$ is not an H-domain.

1. Introduction

Let D be an integral domain with quotient field K, S be a torsion-free grading monoid, and D[S] be the semigroup ring of S over D. A D-submodule F of K is called a fractional ideal of D if $dF \subseteq D$ for some nonzero $d \in D$. For a nonzero fractional ideal I of D, let $I^{-1} = \{x \in K | xI \subseteq D\}$; so I^{-1} is also a nonzero fractional ideal of D.

1.1. Motivation and Result. An integral domain D is called an H-domain if I is an ideal of D such that $I^{-1} = D$, then there is a finitely generated subideal J of I such that $J^{-1} = D$. In [6], Glaz and Vasconcelos introduced the notion of an H-domain, and they then proved that a completely integrally closed H-domain is a Krull domain. They also proved that if D is an H-domain, then D[X], the polynomial ring over D, is also an H-domain. Let $\{X_{\alpha}\}$ be a nonempty set of indeterminates over D. Park showed that if D is an H-domain, then so is $D[\{X_{\alpha}\}]$ [10, Proposition 4.2]. Park also showed that if D is a strong Mori domain and if G is a torsion-free abelian group of type $(0,0,0,\cdots)$, then D[G]

Received May 12, 2011. Revised August 2, 2011. Accepted August 5, 2011. 2000 Mathematics Subject Classification: 13A15, 20M14.

Key words and phrases: semigroup ring, torsion-free grading monoid, H-domain. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0007069).

is an H-domain [10, Proposition 5.5]. Clearly, a strong Mori domain is an H-domain. So it is natural to ask if D[G] is an H-domain when D is an H-domain.

In this paper, we study when D[S] is an H-domain. Precisely, we show that if the quotient group of S is of type $(0,0,0,\ldots)$, then D[S] is an H-domain if and only if D is an H-domain and each maximal t-ideal of S is a v-ideal. Let $\mathbb R$ be the field of real numbers and let Γ be the additive group of rational numbers. We prove that $\mathbb R[\Gamma]$ is not an H-domain, which shows that the assumption that the quotient group of S is of type $(0,0,0,\ldots)$ is necessary for D[S] to be an H-domain.

1.2. Definition and Notation. Let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of D. For each $I \in \mathbf{F}(D)$, let $I_v = (I^{-1})^{-1}$, $I_t = \bigcup \{J_v | J \subseteq I \text{ and } J \text{ is a nonzero finitely generated ideal } \}$, and $I_w = \{x \in K | xJ \subseteq I \text{ for some nonzero finitely generated ideal } J \text{ with } J^{-1} = D \}$. An $I \in \mathbf{F}(D)$ is called a *-ideal if $I_* = I$, where * = v, t, or w, while a *-ideal of D is a maximal *-ideal if it is maximal among proper integral *-ideals of D. It is well known that a prime ideal minimal over a t-ideal is a t-ideal; a maximal t-ideal is a prime ideal; and each proper integral t-ideal is contained in a maximal t-ideal. An integral domain D is a strong Mori domain if D satisfies the ascending chain condition on integral w-ideals. In particular, Noetherian domains are strong Mori domains.

Let S be a torsion-free grading monoid with quotient group G. It is well known that D[S] is an integral domain [4, Theorem 8.1] and S admits a total order < compatible with its monoid operation [4, Corollary 3.4]. Hence each $f \in D[S]$ is uniquely written in the form

$$f = a_0 X^{\alpha_0} + a_1 X^{\alpha_1} + \dots + a_n X^{\alpha_n},$$

where $a_i \in D$ and $\alpha_j \in S$ with $\alpha_0 < \alpha_1 < \cdots < \alpha_n$. For any $f \in K[G]$, we denote by A_f (resp., E_f) the fractional ideal of D (resp., S) generated by the coefficients (resp., exponents) of f; hence $A_f = (a_0, a_1, \ldots, a_n)$ and $E_f = (\alpha_0 + S) \cup (\alpha_1 + S) \cup \cdots \cup (\alpha_n + S)$. The torsion-free abelian group G is said to be of type $(0, 0, 0, \ldots)$ if G satisfies the ascending chain condition on cyclic subgroups. As in the domain case, one can define the v- and t-operation on S; and maximal t-ideals of S.

The reader can refer to $[3, \S 32]$ and $\S 34$ for the v- and t-operation on integral domains; to $[4, \S 16]$ or [7] for the v- and t-operation on monoids; and to [4, 7] for monoids and monoid domains.

2. H-domains

Let D be an integral domain with quotient field K, S be a torsion-free grading monoid with quotient group G and D[S] be the semigroup ring of S over D.

We begin this section with some equivalence conditions of an H-domain. These are already known [8, Proposition 2.4], but we give the proof for the reader's convenience.

LEMMA 1. The following statements are equivalent.

- (1) D is an H-domain.
- (2) Every maximal t-ideal of D is a v-ideal.
- (3) $I_v \subseteq D$ for each proper integral t-ideal I of D.

Proof. (1) \Rightarrow (2) Let Q be a maximal t-ideal of D. If $Q^{-1} = D$, then there is a nonzero finitely generated ideal $J \subseteq Q$ such that $J^{-1} = D$. So $D = J_v \subseteq Q_t = Q \subsetneq D$, a contradiction. Hence $Q^{-1} \supsetneq D$, and since Q is a maximal t-ideal, $Q = Q_v$. (2) \Rightarrow (3) If $I = I_t \subsetneq D$, then there is a maximal t-ideal Q of D such that $I \subseteq Q$. Hence $I_v \subseteq Q_v = Q \subsetneq D$. (3) \Rightarrow (1) Let I be a nozero ideal of D with $I^{-1} = D$. Then $I_v = D$, and hence $I_t = D$ by (3). So there is a finitely generated ideal $J \subseteq I$ such that $J_v = D$ or $J^{-1} = D$.

LEMMA 2. Let S be a torsion-free grading monoid with quotient group G, K be a field, Q be a maximal t-ideal of K[S], and $N = \{X^{\alpha} | \alpha \in S\}$.

- (1) If $Q \cap N \neq \emptyset$, then $J = \{\alpha \in S | X^{\alpha} \in Q\}$ is a maximal t-ideal of S and Q = K[J].
- (2) If $Q \cap N = \emptyset$, then QK[G] is a maximal t-ideal of K[G].
- (3) If G is of type (0,0,0,...) and if $Q \cap N = \emptyset$, then Q is a height-one t-invertible prime t-ideal.

Proof. (1) [1, Corollary 1.3].

(2) Suppose that $(QK[G])_t = K[G]$. Note that $K[S]_N = K[G]$. Then there is a finitely generated subideal A of Q such that $A^{-1} \subseteq A^{-1}K[G] = (AK[G])^{-1} = K[G]$ [11, Lemma 1.4]. Note that $Q \subseteq K[\bigcup_{f \in Q} E_f]$ and Q is a maximal t-ideal of K[S]. So $(\bigcup_{f \in Q} E_f)_t = S$ (cf. [2, Lemma 2.3]), and hence $(E_{f_1} \cup \cdots \cup E_{f_k})_v = S$ for some $f_1, \ldots, f_k \in Q$. Let $I = (A, f_1, \ldots, f_k)$. Then I is a finitely generated subideal of Q such that $I^{-1} \subseteq I^{-1}K[G] = (IK[G])^{-1} \subseteq (AK[G])^{-1} = K[G]$. Let $0 \neq g \in I^{-1}$. Then $gf_i \in K[S]$ for $i = 1, \ldots, k$ and $K[S] = K[((m_1 + 1)E_{f_1} \cup \cdots \cup I_{f_k})]$

- $(m_k+1)E_{f_k})_t$] = $(K[(m_1+1)E_{f_1}\cup\cdots\cup(m_k+1)E_{f_k}])_t$ [2, Lemma 2.3], and hence $K[E_g]=(K[(m_1+1)E_{f_1}\cup\cdots\cup(m_k+1)E_{f_k}]K[E_g])_t=(K[(m_1E_{f_1}+E_{f_1g})\cup\cdots\cup(m_kE_{f_k}+E_{f_kg})])_t\subseteq K[S]$ for some positive integers m_i [5, Proposition 6.2]; so $g\in K[S]$. Thus $I^{-1}=K[S]$ and $I_v\subseteq Q\subsetneq K[S]$, a contradiction. Thus $(QK[G])_t\subsetneq K[G]$. If Q_0 is a prime ideal of K[S] such that $QK[G]\subseteq Q_0K[G]$ and $Q_0K[G]$ is a maximal t-ideal of K[G]. Then $Q\subseteq Q_0K[G]\cap K[S]=Q_0$ and Q_0 is also a prime t-ideal [9, Lemma 3.17]. Thus, $Q=Q_0$ and $QK[G]=Q_0K[G]$.
- (3) Note that K[G] is a UFD [4, Theorem 14.15], because G is of type $(0,0,0,\ldots)$. Since QK[G] is a t-ideal of K[G] by (2), we have QK[G] = hK[G] for some $h \in Q$ and htQ = ht(QK[G]) = 1. Let $f_1,\ldots,f_k \in Q$ such that $(E_{f_1} \cup \cdots \cup E_{f_k})_v = S$ (see the proof of (2)). Then $(f_1,\ldots,f_k,h)_v = Q$ [9, Proposition 2.8]. Also, since Q is a maximal t-ideal, Q is t-locally principal. Thus, Q is t-invertible [9, Corollary 2.7].

LEMMA 3. Let S be a torsion-free grading monoid, and let Q be a maximal t-ideal of D[S].

- (1) If $Q \cap D \neq 0$, then $Q = (Q \cap D)D[S]$ and $Q \cap D$ is a maximal t-ideal of D.
- (2) If $Q \cap D = 0$, then QK[S] is a maximal t-ideal of K[S].

Proof. (1) [1, Corollary 1.3].

(2) Note that $D[S]_{D\setminus\{0\}} = K[S]$. If $(QK[S])_t = K[S]$, then there exists a finitely generated ideal $B\subseteq Q$ such that $B^{-1}\subseteq B^{-1}K[S]=(BK[S])^{-1}=K[S]$ [11, Lemma 1.4]. Since Q is a maximal t-ideal of D[S] with $Q\cap D=0$, $(\sum_{g\in Q}A_g)_t=D$, and hence $(A_{g_1}+\cdots+A_{g_m})_v=D$ for some $g_1,\ldots,g_m\in Q$. Let $J=(B,g_1,\ldots,g_m)$. Then J is a finitely generated subideal of Q such that $J^{-1}\subseteq J^{-1}K[S]=(JK[S])^{-1}\subseteq (BK[S])^{-1}=K[S]$. Let $0\neq h\in J^{-1}$. Then $hg_i\in D[S]$ for $i=1,\ldots,m$, and hence $A_h[S]=((A_{g_1}^{k_1+1}+\cdots+A_{g_m}^{k_m+1})[S])(A_h[S]))_t=((A_{g_1}^{k_1}A_{g_1h})+\cdots+(A_{g_m}^{k_m}A_{g_mh})[S])_t\subseteq D[S]$ for some positive integers k_i ([5, Theorem 4.3] and [2, Lemma 2.3]); so $h\in K[S]$. Thus $J^{-1}=D[S]$ and $J_v\subseteq Q\subsetneq D[S]$, a contradiction. Thus $(QK[S])_t\subsetneq K[S]$. If Q' is a prime ideal of K[S] such that $QK[S]\subseteq Q'K[S]$ and Q'K[S] is a maximal t-ideal of K[S]. Then $Q\subseteq Q'K[S]\cap D[S]=Q'$ and Q' is also a prime t-ideal [9, Lemma 3.17]. Thus, Q=Q' and QK[S] is a maximal t-ideal. \square

LEMMA 4. Let S be a torsion-free grading monoid. If D[S] is an H-domain, then D is an H-domain and every maximal t-ideal of S is a v-ideal.

Proof. Let P be a maximal t-ideal of D. Then PD[S] is a prime t-ideal of D[S], and hence $P_v \subseteq (P_vD[S])_v = (PD[S])_v \subsetneq D[S]$ [2, Lemma 2.3]; so $P_v \subsetneq D$. Thus D is an H-domain by Lemma 1. Let J be a maximal t-ideal of S. Then D[J] is a t-ideal of D[S] [2, Corollary 2.4], and hence $D[J_v] = (D[J])_v \subsetneq D[S]$ [2, Lemma 2.3]. Hence $J_v \subsetneq S$, and thus $J = J_v$.

THEOREM 5. Let S be a torsion-free grading monoid with quotient group G such that G is of type $(0,0,0,\ldots)$. Then D[S] is an H-domain if and only if D is an H-domain and every maximal t-ideal of S is a v-ideal.

Proof. (\Rightarrow) Lemma 4.

(\Leftarrow) Let $N = \{X^{\alpha} | \alpha \in S\}$ and let Q be a maximal t-ideal of D[S]. By Lemma 1, it suffices to show that $Q_v = Q$.

Case 1. $Q \cap D \neq 0$. Then $Q \cap D$ is a maximal t-ideal of D and $Q = (Q \cap D)D[S]$ by Lemma 3(1). Thus $Q = (Q \cap D)D[S] = (Q \cap D)D[S] = (Q \cap D)D[S] = (Q \cap D)D[S] = (Q \cap D)D[S]$

Case 2. $Q \cap D = 0$. Then QK[S] is a maximal t-ideal of K[S] by Lemma 3(2). If $QK[S] \cap N = \emptyset$, then QK[S] is a height-one t-invertible prime ideal of K[S] by Lemma 2(3); so $Q_v \subseteq Q_vK[S] \subseteq (Q_vK[S])_v = (QK[S])_v = QK[S]$. Thus $Q_v \subseteq QK[S] \cap D[S] = Q$, and hence $Q_v = Q$. If $QK[S] \cap N \neq \emptyset$, then QK[S] = K[J] for some maximal t-ideal J of S by Lemma 2(1). Thus $Q_v \subseteq Q_vK[S] \subseteq (Q_vK[S])_v = (QK[S])_v = (K[J])_v = K[J_v] = K[J] = Q$; so $Q_v = Q$.

In [10, Proposition 5.5], M.H. Park shows that if D is a strong Mori domain and if G is a torsion-free abelian group of type $(0,0,0,\ldots)$, then D[G] is an H-domain. It is well-known that a strong Mori domain is an H-domain. Thus the following corollary is a generalization of Park's results [10, Propositions 4.2 and 5.5].

COROLLARY 6. Let D be an integral domain and G be a torsion-free abelian group of type $(0,0,0,\ldots)$. Then D[G] is an H-domain if and only if D is an H-domain.

COROLLARY 7. ([10, Proposition 4.2]) Let $\{X_{\alpha}\}$ be a nonempty set of indeterminates over D. Then D is an H-domain if and only if $D[\{X_{\alpha}\}]$ is an H-domain.

Proof. Let $S = \sum_{\alpha} (\mathbb{Z}_+)_{\alpha}$, where $(\mathbb{Z}_+)_{\alpha}$ is the additive semigroup of nonnegative integers. Then $D[S] = D[\{X_{\alpha}\}]$ and S is a torsion-free grading monoid whose quotient group is of type (0,0,0,...). Thus, D is an H-domain if and only if $D[\{X_{\alpha}\}]$ is an H-domain by Theorem 5. \square

We end this paper with an example which shows that in Theorem 5, the assumption that G is of type (0, 0, 0, ...) is necessary.

EXAMPLE 8. Let \mathbb{R} be the field of real numbers and Γ be the additive group of rational numbers.

- (1) Γ is a torsion-free abelian group.
- (2) Γ is not of type (0, 0, 0, ...).
- (3) $\mathbb{R}[\Gamma]$ is a GCD-domain, but not a UFD.
- (4) Each maximal t-ideal of Γ is a v-ideal.
- (5) $\mathbb{R}[\Gamma]$ has the (Krull) dimension one.
- (6) $\mathbb{R}[\Gamma]$ is not an H-domain.

Proof. (1) Clear. (2) This follows, because we have an infinite sequence of cyclic subgroups of Γ , say, $(\frac{1}{2}) \subsetneq (\frac{1}{2^2}) \subsetneq (\frac{1}{2^3}) \subsetneq \cdots$. (3) This is an immediate consequence of (1), (2) and [4, Theorems 14.5 and 14.16]. (4) Clear. (5) This follows from [4, Theorem 17.1]. (6) Let Q be a maximal t-ideal of $\mathbb{R}[\Gamma]$ such that $Q^{-1} \supsetneq \mathbb{R}[\Gamma]$. Choose $u \in Q^{-1} \setminus \mathbb{R}[\Gamma]$. Then $\mathbb{R}[\Gamma] \subsetneq (1,u) \subseteq Q^{-1}$, and since Q is a maximal t-ideal, we have $Q = Q_v = (1,u)^{-1}$. Since $\mathbb{R}[\Gamma]$ is a GCD-domain, $Q = (1,u)^{-1}$ must be principal. So by (3) and (5), there is a maximal t-ideal Q of $\mathbb{R}[\Gamma]$ with $Q^{-1} = \mathbb{R}[\Gamma]$. Thus, $\mathbb{R}[\Gamma]$ is not an H-domain.

Acknowledgements

The author would like to thank the referee for several helpful comments.

References

- [1] D.F. Anderson and G.W. Chang, *Homogeneous splitting sets of a graded integral domain*, J. Algebra **288** (2005), 527–544.
- [2] S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), 171–184.
- [3] R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.

- [4] R. Gilmer, Commutative Semigroup Rings, The Univ. of Chicago, Chicago, 1984.
- [5] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65–86.
- [6] S. Glaz and W.V. Vasconcelos, Flat ideals II, Manuscripta Math. 22 (1977), 325–341.
- [7] F. Halter-Koch, Ideal Systems: An Introduction to Multiplicative Ideal Theory, Dekker, New York, 1998.
- [8] E. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial, Michigan Math. J. 35 (1988), 291–300.
- [9] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), 151–170.
- [10] M.H. Park, Group rings and semigroup rings over strong Mori domains, J. Pure Appl. Algebra 163 (2001), 301–318.
- [11] M. Zafrullah, *Putting t-invertibility to use*, in Non-Noetherian Commutative Ring Theory, Math. Appl. Kluwer Acad. Publ. Dordrecht **520** (2000), 429–457.

Department of Mathematics University of Incheon Incheon 406-772, Korea

E-mail: whan@incheon.ac.kr