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STRONG CONVERGENCE OF PATHS FOR

NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

Shin Min Kang, Sun Young Cho and Young Chel Kwun∗

Abstract. Let E be a uniformly convex Banach space with a uni-
formly Gâteaux differentiable norm, C be a nonempty closed convex
subset of E and f : C → C be a fixed bounded continuous strong
pseudocontraction with the coefficient α ∈ (0, 1). Let {λt}0<t<1

be a net of positive real numbers such that limt→0 λt = ∞ and
S = {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C such
that F (S) ̸= ∅, where F (S) denotes the set of fixed points of the

semigroup. Then sequence {xt} defined by xt = tf(xt) + (1 −
t) 1

λt

∫ λt
0 T (s)xtds converges strongly as t → 0 to x̄ ∈ F (S), which

solves the following variational inequality ⟨(f − I)x̄, p − x̄⟩ ≤ 0 for
all p ∈ F (S).

1. Introduction and preliminaries

Let E be a Banach space with the dual E∗. We denote by J the
normalized duality mapping from E to 2E

∗
defined by

Jx = {f∗ ∈ E∗ : ⟨x, f∗⟩ = ∥x∥2 = ∥f∗∥2},

where ⟨·, ·⟩ denotes the generalized duality pairing. Let UE = {x ∈
E : ∥x∥ = 1}. E is said to be Gâteaux differentiable if the limit

limt→0
∥x+ty∥−∥x∥

t exists for all x, y ∈ UE . In this case, E is said to be
smooth. In a smooth Banach space, the normalized duality mapping
is single valued. In the work, we use j to denote the single valued
normalized duality mapping. The norm of E is said to be uniformly
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Gâteaux differentiable if for each y ∈ UE , the limit is attained uniformly
for each x ∈ UE .

E is said to be uniformly convex if for any ϵ ∈ (0, 2] there exists
δ > 0 such that, for all x, y ∈ UE ,

∥x− y∥ ≥ ϵ implies ∥x+ y∥ ≤ 2(1− δ).

It is known that a uniformly convex Banach space is reflexive and
strictly convex.

Let C be a nonempty closed convex subset of E and T : C → C
be a nonlinear mapping. A point x ∈ C is said to be a fixed point of
T if Tx = x. Denote by F (T ) the set of fixed points of T ; that is,
F (T ) = {x ∈ C : Tx = x}. Recall the following definitions.

(1) T is said to be contractive if there exists a constant α ∈ (0, 1)
such that

∥Tx− Ty∥ ≤ α∥x− y∥, ∀x, y ∈ C;

(2) T is said to be strongly pseudocontractive if there exists a con-
stant α ∈ (0, 1) and j(x− y) ∈ J(x− y) such that

⟨Tx− Ty, j(x− y)⟩ ≤ α∥x− y∥2, ∀x, y ∈ C;

(3) T is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

One classical way to study nonexpansive mappings is to use contrac-
tions to approximate a nonexpansive mapping; see [3,8-10,14]. More
precisely, take t ∈ (0, 1) and define a contraction Tt : C → C by

(1.1) Ttx = tu+ (1− t)Tx, x ∈ C,

where u ∈ C is a fixed point. Banach’s contraction mapping principle
guarantees that Tt has a unique fixed point xt in C. In the case that
T enjoys a nonempty fixed point set, Browder [3] proved that if E is a
Hilbert space, then {xt} does converges strongly to the fixed point of T
that is nearest to u. Reich [10] extended Browder’s result to the setting
of Banach space and proved that if E is a uniformly smooth Banach
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space, then {xt} converges strongly to a fixed point of T and the limit
defines the unique sunny nonexpansive retraction from C onto F (T ).

Viscosity approximation method which was introduced by Moudafi
[7] has been considered by many authors. In 2004, Xu [14] studied the
following continuous scheme

(1.2) xt = tf(xt) + (1− t)Txt,

where t ∈ (0, 1), f is a contraction with the coefficient α ∈ (0, 1) and
T is a nonexpansive self-mapping on C. He showed that {xt} defined
by (1.2) converges strongly to a fixed point x of the mapping T , which
also solves the following variational inequality

⟨f(x)− x, j(y − x)⟩ ≤ 0, ∀y ∈ F (T ).

Recall that a family S = {T (s) : 0 ≤ s < ∞} of mappings from
C into itself is called a nonexpansive semigroup on C if it satisfies the
following conditions:

(c1) T (0)x = x for all x ∈ C;
(c2) T (s+ t)x = T (s)T (t)x for all x ∈ C and s, t ≥ 0;
(c3) ∥T (s)x− T (s)y∥ ≤ ∥x− y∥ for all x, y ∈ C and s ≥ 0;
(c4) for all x ∈ C, s 7→ T (s)x is continuous.

In this paper, we use F (S) to denote the set of fixed points of S, that
is, F (S) =

∩
0≤s<∞ F (T (s)). We know that F (S) ̸= ∅ if C is bounded;

see [2].
Recently, Plubtieng and Punpaeng [8] studied the problem of con-

vergence of paths for nonexpansive semigroups in Hilbert spaces. To
be more precise, they proved the following result.

Theorem PP. Let C be a nonempty closed convex subset of a
real Hilbert space and S = {T (s) : 0 ≤ s < ∞} be a nonexpansive
semigroup on C such that F (S) ̸= ∅. Let {λt} be a net of positive real
numbers such that limt→0 λt = ∞. Then for a contraction f : C → C
with coefficient α ∈ (0, 1), the sequence {xt} defined by

xt = tf(xt) + (1− t)
1

λt

∫ λt

0

T (s)xtds,
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converges strongly to x̃, where x̃ is the unique solution in F (S) of the
variational inequality

⟨(I − f)x̃, x− x̃⟩ ≤ 0, ∀x ∈ F (S).

The purpose of this paper is to establish a general Banach version of
Theorem PP. In order to prove our main result, we need the following
lemmas.

Lemma 1.1. ([1,5,11]) Let D be a nonempty bounded closed convex
subset of a uniformly convex Banach Space E and S = {T (t) : 0 ≤ t <
∞} be a nonexpansive semigroup on D. Then, for any 0 ≤ h < ∞,

lim
t→∞

sup
x∈D

∥∥∥∥1t
∫ t

0

T (s)xds− T (h)
1

t

∫ t

0

T (s)xds

∥∥∥∥ = 0.

A function ω : R+ → R+ is said to belong to Γ if it satisfies the
following conditions:

(1) ω(0) = 0;
(2) r > 0 ⇒ ω(r) > 0;
(3) t ≤ s ⇒ ω(t) ≤ ω(s).

Lemma 1.2. ([13]) Let E be a uniformly convex Banach space.
Then, for any R > 0, there exists ωR ∈ Γ such that

x, y ∈ BR[0], x∗ ∈ J(x), y∗ ∈ J(y)

=⇒ ⟨x− y, x∗ − y∗⟩ ≥ ωR(∥x− y∥)∥x− y∥,

where BR[0] = {x : ∥x∥ ≤ R}.

Lemma 1.3. ([6]) Let E be a Banach space, C be a nonempty closed
convex subset of E and T : C → C be a continuous strong pseudocon-
traction. Then T has a unique fixed point in C.

Next, let us recall the definition of means. Let S be a nonempty
set and B(S) the Banach space of all bounded real valued functions
on S with the supremum norm. Let X be a subspace of B(S) and µ
an element in X∗, where X∗ denotes the dual space of X. Then we
denote by µ(f) the value of µ at f ∈ X. If e(s) = 1 for all s ∈ S,
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sometimes µ(e) will be denoted by µ(1). When X contains constants,
a linear functional µ on X is said to be a mean on X if ∥µ∥ = µ(1) = 1.
From [13], we see that µ is a mean on X if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s), ∀f ∈ X.

Set A = (0, 1), let B(A) denote the Banach space of all bounded real
value functions on A with supremum norm and let X be a subspace of
B(A).

Lemma 1.4. ([13]) Let C be a nonempty closed convex subset of a
Banach space E. Suppose that the norm of E is uniformly Gâteaux
differentiable. Let {xt} be a bounded set in E and z ∈ C. Let µt be
a mean on X. Then µt∥xt − z∥2 = miny∈C ∥xt − y∥2 if and only if
µt⟨y − z, J(xt − z)⟩ ≤ 0 for all y ∈ C.

2. Main results

Theorem 2.1. Let E be a uniformly convex Banach space with a
uniformly Gâteaux differentiable norm, C be a nonempty closed convex
subset of E and f : C → C be a fixed bounded continuous strong
pseudocontraction with the coefficient α ∈ (0, 1). Let {λt}0<t<1 be a
net of positive real numbers such that limt→0 λt = ∞ and S = {T (s) :
0 ≤ s < ∞} be a nonexpansive semigroup on C such that F (S) ̸= ∅.
Then {xt} defined by

(2.1) xt = tf(xt) + (1− t)
1

λt

∫ λt

0

T (s)xtds,

where t ∈ (0, 1) converges strongly as t → 0 to x̄ ∈ F (S), which solves
the following variational inequality

⟨f(x̄)− x̄, j(p− x̄)⟩ ≤ 0, ∀p ∈ F (S).

Proof. For t ∈ (0, 1), define a mapping T f
t : C → C by

T f
t x = tf(x) + (1− t)

1

λt

∫ λt

0

T (s)xds.



284 Shin Min Kang, Sun Young Cho and Young Chel Kwun

Then T f
t : C → C is a continuous strong pseudocontraction for each

t ∈ (0, 1). Indeed, for each x, y ∈ C, we have

⟨T f
t x− T f

t y, j(x− y)⟩
= t⟨f(x)− f(y), j(x− y)⟩

+ (1− t)

⟨
1

λt

∫ λt

0

T (s)xds− 1

λt

∫ λt

0

T (s)yds, j(x− y)

⟩
≤ tα∥x− y∥2 + (1− t)∥x− y∥2

= [1− t(1− α)]∥x− y∥2.

From Lemma 1.3, we see that T f
t has a unique fixed point xt in C for

each t ∈ (0, 1). Hence (2.1) is well defined.
Next, we show that {xt} is bounded. Taking p ∈ F (S), we have

∥xt − p∥2 = ⟨xt − p, j(xt − p)⟩
= t⟨f(xt)− p, j(xt − p)⟩

+ (1− t)

⟨
1

λt

∫ λt

0

T (s)xtds− p, j(xt − p)

⟩
= t⟨f(xt)− f(p), j(xt − p)⟩+ t⟨f(p)− p, j(xt − p)⟩

+ (1− t)

⟨
1

λt

∫ λt

0

T (s)xtds− p, j(xt − p)

⟩
≤ tα∥x− p∥2 + t⟨f(p)− p, j(xt − p)⟩

+ (1− t)∥ 1

λt

∫ λt

0

T (s)xtds− p∥∥xt − p∥

≤ [1− t(1− α)]∥xt − p∥2 + t⟨f(p)− p, j(xt − p)⟩.

It follows that

(2.2) ∥xt − p∥2 ≤ 1

1− α
⟨f(p)− p, j(xt − p)⟩.

This implies that

∥xt − p∥ ≤ 1

1− α
∥f(p)− p∥.
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This shows that {xt} is bounded. On the other hand, for each τ ≥ 0,
we have

(2.3)

∥T (τ)xt − xt∥

≤
∥∥∥∥T (τ)xt − T (τ)

(
1

λt

∫ λt

0

T (s)xtds

)∥∥∥∥
+

∥∥∥∥T (τ)( 1

λt

∫ λt

0

T (s)xtds

)
− 1

λt

∫ λt

0

T (s)xtds

∥∥∥∥
+

∥∥∥∥ 1

λt

∫ λt

0

T (s)xtds− xt

∥∥∥∥
≤ 2

∥∥∥∥xt −
1

λt

∫ λt

0

T (s)xtds

∥∥∥∥
+

∥∥∥∥T (τ)( 1

λt

∫ λt

0

T (s)xtds

)
− 1

λt

∫ λt

0

T (s)xtds

∥∥∥∥
=

2t

1− t
∥f(xt)− xt∥

+

∥∥∥∥T (τ)( 1

λt

∫ λt

0

T (s)xtds

)
− 1

λt

∫ λt

0

T (s)xtds

∥∥∥∥.
Letting z0 ∈ F (S) and M = {z ∈ C : ∥z− z0∥ ≤ 1

1−α∥f(z0)− z0∥}, we
see that M is a nonempty bounded closed convex subset of C which is
T (s)-invariant for each s ∈ [0,∞) and contains {xt}. From Lemma 1.1
and passing to limt→0 in (2.3), we can obtain that, for all τ ≥ 0,

(2.4) T (τ)xt − xt → 0 as t → 0.

Define h(x) = µt∥xt − x∥2 for all x ∈ C, where µt is a mean. Then
h(x) is a continuous, convex and h(x) → ∞ as ∥x∥ → ∞. We see that
h attains its infinimum over C (see, e.g., [11,13]). Set

D =
{
x ∈ C : h(x) = inf

y∈C
h(y)

}
.

Then D is a nonempty bounded closed convex subset of C. We see
that D is singleton. Indeed, suppose that x̃, x̄ ∈ D and x̃ ̸= x̄. From
Lemma 1.2, we see that

⟨(xt − x̄)− (xt − x̃), j(xt − x̄)− j(xt − x̃)⟩
> ωR(∥x̄− x̃∥)∥x̄− x̃∥, ∀0 < t < 1.
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It follows that

(2.5) µt⟨x̃− x̄, j(xt − x̄)− j(xt − x̃)⟩ > 0.

On the other hand, we see from Lemma 1.4 that

(2.6) µt⟨x̃− x̄, j(xt − x̄)⟩ ≤ 0

and

(2.7) µt⟨x̄− x̃, j(xt − x̃)⟩ ≤ 0.

Adding up (2.6) and (2.7), we arrive at

µt⟨x̃− x̄, j(xt − x̄)− j(xt − x̃)⟩ ≤ 0.

This contradicts (2.5). This shows that x̄ = x̃. Next, we denote the
single element in D by x̄. It follows from (2.4) that

h(T (τ)(x̄)) = µt∥xt − T (τ)(x̄)∥2

= µt∥T (τ)(xt)− T (τ)(x̄)∥2

≤ µt∥xt − x̄∥2

= h(x̄), ∀τ ≥ 0.

This implies that x̄ = T (τ)(x̄) for all τ ≥ 0, that is, x̄ ∈ F (S).
On the other hand, we see from Lemma 1.4 that

µt⟨y − x̄, j(xt − x̄)⟩ ≤ 0, ∀y ∈ C.

By taking y = f(x̄), we obtain that

(2.8) µt⟨f(x̄)− x̄, j(xt − x̄)⟩ ≤ 0.

Combining (2.2) with (2.8), we arrive at

µt∥xt − x̄∥2 = 0.

This implies that there exists a subnet {xtα} of {xt} such that xtα → x̄.



Strong convergence of paths for nonexpansive semigroups 287

Notice that

xt − f(xt) = (1− t)

(
1

λt

∫ λt

0

T (s)xtds− f(xt)

)
.

For any p ∈ F (S), we see that

⟨xt − f(xt), j(xt − p)⟩

= (1− t)

⟨
1

λt

∫ λt

0

T (s)xtds− f(xt), j(xt − p)

⟩
= (1− t)

⟨
1

λt

∫ λt

0

T (s)xtds− xt, j(xt − p)

⟩
+ (1− t)⟨xt − f(xt), j(xt − p)⟩

= (1− t)

⟨
1

λt

∫ λt

0

T (s)xtds− p, j(xt − p)

⟩
+ (1− t)⟨p− xt, j(xt − p)⟩+ (1− t)⟨xt − f(xt), j(xt − p)⟩

≤ (1− t)⟨xt − f(xt), j(xt − p)⟩,

which implies that

(2.9) ⟨xt − f(xt), j(xt − p)⟩ ≤ 0, ∀p ∈ T (S).

In particular, we have

(2.10) ⟨xtα − f(xtα), j(xtα − p)⟩ ≤ 0, ∀p ∈ T (S).

It follows that

(2.11) ⟨x̄− f(x̄), j(x̄− p)⟩ ≤ 0, ∀p ∈ T (S).

Assume that there exists another subnet {xtβ} of {xt} such that xtβ →
x̂ ∈ F (S). From (2.11), we arrive at

(2.12) ⟨x̄− f(x̄), j(x̄− x̂)⟩ ≤ 0.

In view of (2.9), we see that

(2.13) ⟨xtβ − f(xtβ ), j(xtβ − x̄)⟩ ≤ 0.
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It follows that

(2.14) ⟨x̂− f(x̂), j(x̂− x̄)⟩ ≤ 0.

Adding up (2.12) and (2.14), we obtain that

⟨x̄− f(x̄)− x̂+ f(x̂), j(x̄− x̂)⟩ ≤ 0.

This implies that
∥x̄− x̂∥2 ≤ α∥x̄− x̂∥2.

Note that α ∈ (0, 1). We see that x̄ = x̂. This shows that {xt}
converges strongly to x̄ ∈ F (S), which is the unique solution to the
variational inequality

⟨f(x̄)− x̄, j(p− x̄)⟩ ≤ 0, ∀p ∈ F (S).

This completes the proof. �

Remark 2.2. The viscosity approximation method considered in
Theorem 2.1 is different from Moudafi’s and Chen et al.’s. In [7],
Moudafi considered f as a contraction. In [4], Chen et al. considered
f as a Lipschitz strong pseudocontraction. In this work, we consider f
as a continuous strong pseudocontraction.

Remark 2.3. Theorem 2.1 which includes the corresponding results
announced in Chen and Song [5], Shioji and Takahashi [12] and Xu
[14] as special cases mainly improves Theorem PP (Theorem 3.1 of
Plubtieng and Punpaeng [8]) in the following aspects.

(1) Extend the space from Hilbert spaces to uniformly convex Ba-
nach spaces;

(2) Extend the mapping f from the class of contractions to the class
continuous strong pseudocontractions.
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