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CYCLES OF CHARACTERISTIC MATRICES OF

CELLULAR AUTOMATA WITH PERIODIC BOUNDARY

CONDITION

Jae-Gyeom Kim

Abstract. In this note, we will investigate some relations among
powers of characteristic matrices of uniform cellular automata con-
figured with rule 102 and periodic boundary condition.

1. Introduction

Cellular automata have been demonstrated by many researchers to be
a good computational model for physical systems simulation since the
concept of cellular automata first introduced by John Von Neumann in
the 1950s. Cellular automata configured with rule 102 and null bound-
ary condition has been studied [1, 4-7, 9, 10]. And researches about
cellular automata with periodic boundary condition mainly focused on
reversibility [2, 3, 8].

In this note, we will investigate some relations among powers of char-
acteristic matrices of uniform cellular automata configured with rule 102
and periodic boundary condition.

2. Preliminaries

A cellular automaton (CA) is an array of sites (cells) where each
site is in any one of the permissible states. At each discrete time step
(clock cycle) the evolution of a site value depends on some rule (the
combinational logic) which is a function of the present state of its k
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neighbors for a k-neighborhood CA. For 2-state 3-neighborhood CA,
the evolution of the (i)th cell can be represented as a function of the
present states of (i − 1)th, (i)th, and (i + 1)th cells as: xi(t + 1) =
f(xi−1(t), xi(t), xi+1(t)), where f represents the combinational logic. For
such 2-state site value calculation of CA, the modulo-2 logic is always
applied.

For 2-state 3-neighborhood CA there are 23 distinct neighborhood
configurations and 22

3
distinct mappings from all these neighborhood

configurations to the next state, each mapping representing a CA rule.
The CA, characterized by a rule known as rule 102, specifies an evolution
from neighborhood configuration to the next state as:

111 110 101 100 011 010 001 000
0 1 1 0 0 1 1 0 decimal 102.

The corresponding combinational logic of rule 102 is

xi(t+ 1) = xi(t)⊕ xi+1(t),

that is, the next state of (i)th cell depends on the present states of self
and its right neighbors.

If in a CA the same rule applies to all cells, then the CA is called
a uniform CA; otherwise the CA is called a hybrid CA. There can be
various boundary conditions; namely, null (where extreme cells are con-
nected to logic ‘0’, periodic (extreme cells are adjacent), etc. In the
sequel, we will deal with periodic boundary condition.

The characteristic matrix T of a CA is the transition matrix of the
CA. The next state ft+1(x) of a CA is given by ft+1(x) = T × ft(x),
where ft(x) is the current state, t is the time step. The length of a CA is
the number of cells of the CA. Some powers of the characteristic matrix
T , for examples, of the CA of length 6 configured with rule 102 and
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periodic boundary condition are as follows;

[T ] =


1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1

 , [T 2] =


1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1

 ,

[T 3] =


1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1
1 0 0 1 1 1
1 1 0 0 1 1
1 1 1 0 0 1

 , [T 4] =


1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 .

Note that (i)th row of [Tm] is an (i− 1)-step shift of the first row of
[Tm] from left to right with modulo l, where a 1-step shift is one site
(cell) shift. So the first row of [Tm] completely characterizes [Tm]. [T 0]
denotes the identity matrix.

For the characteristic matrix T of the CA of length l configured with
rule 102 and periodic boundary condition, [Tp] is the matrix of column
size l and sufficiently large row size defined by [Tp]i,j = [T i−1]1,j where
i = 1, 2, · · · and j = 1, · · · , l. And [Tp] of column size l characterizes
completely the powers of the characteristic matrix T of the CA of length
l configured with rule 102 and periodic boundary condition. The matrix
[Tp] of column size 9, for example, is as follows;

[Tp] =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 0 0
1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0 1

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .



.
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Lemma 2.1. [5] Let T be the characteristic matrix of the CA of length
l configured with rule 102 and periodic boundary condition. And let
2 ≤ 2t+1 ≤ l. Then three 2t entries, which are the first 2t entries of
the first row of [Tp] and the first 2t entries and the second 2t entries of
(2t+1)th row of [Tp], have the same pattern of which only the first value
is 1.

Lemma 2.2. [5] Let T be the characteristic matrix of the CA of length
l configured with rule 102 and periodic boundary condition. And let
1 ≤ n ≤ l−1 and n = a02

0+a12
1+a22

2+ · · · with ai = 0 or 1 for i = 1,
2, · · · . Then we have entry values of [Tp] as in Table 1.

Table 1. Values of [Tp]i,j

r ar [Tp]i,j (n+ 1 ≤ l and 2m + k ≤ l) k

0
a0 = 0 [Tp]n+1,20+k = [Tn]1,20+k = 0

1
a0 = 1 [Tp]n+1,20+k = [Tn]1,20+k = [Tn]1,k = [Tp]n+1,k

1
a1 = 0 [Tp]n+1,21+k = [Tn]1,21+k = 0

1,2
a1 = 1 [Tp]n+1,21+k = [Tn]1,21+k = [Tn]1,k = [Tp]n+1,k

2
a2 = 0 [Tp]n+1,22+k = [Tn]1,22+k = 0

1,2,3,4
a2 = 1 [Tp]n+1,22+k = [Tn]1,22+k = [Tn]1,k = [Tp]n+1,k

· · ·

m
am = 0 [Tp]n+1,2m+k = [Tn]1,2m+k = 0

1, · · · , 2m
am = 1 [Tp]n+1,2m+k = [Tn]1,2m+k = [Tn]1,k = [Tp]n+1,k

· · ·

3. Cycles of characteristic matrices

We will investigate some relations among powers of the characteristic
matrix T of the CA of length l configured with rule 102 and periodic
boundary condition.

The following lemma is quite similar to Lemma 2.1.

Lemma 3.1. Let T be the characteristic matrix of the CA of length l
configured with rule 102 and periodic boundary condition. If 2t < l for
some t ≥ 0, then we have

[Tp]2t+1,j = [T 2t ]1,j =

{
1, if j = 1 or 2t + 1,

0, otherwise.
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Proof. If 2t+1 ≤ l, then the lemma is equal to Lemma 2.1. Thus let
2t < l < 2t+1. If we can extend the column size l of T to 2t+1 without
changing the value of (2t + 1)th row of [Tp], we have the conclusion by
comparing with Lemma 2.1. In fact, we can do that by assigning value
0 to every extended entry because [Tp]i,j = 0 if i ≤ l and i < j. Hence
we have the lemma.

Proposition 3.2. Let T be the characteristic matrix of the CA of
length l configured with rule 102 and periodic boundary condition. And
let l = 2t + 2s with 0 ≤ s < t. Then (2t + 1)th row of [Tp] is a (2s)-step

shift of (2s + 1)th row of [Tp] from right to left, in other words, [T 2t ] is
a (2s)-step shift of [T 2s ] from right to left.

Proof. By Lemma 3.1, we have

[Tp]2t+1,j =

{
1, if j = 1 or 2t + 1,

0, otherwise.

If s = 0, then l = 2t + 1, and so both of the first and the last entries
of (2t + 1)th row of [Tp] are 1 and the remaining entries are all 0. Thus
the (2t +1)th row is a (20)-step shift of (20 +1)th row of [Tp] from right
to left. And if s ≥ 1, then both of the first and (2t + 1)th entries of
the (2t + 1)th row are 1 and remaining entries including the last 2s − 1
entries are all 0, and so the (2t +1)th row is a 2s-step shift of (2s +1)th
row of [Tp] from right to left.

Now we can give a relation among some powers of the characteristic
matrix T of the CA of length l configured with rule 102 and periodic
boundary condition.

Theorem 3.3. Let T be the characteristic matrix of the CA of length
l configured with rule 102 and periodic boundary condition. And let
l = 2t + 2s with 0 ≤ s < t. Then all of the rows of [Tp] except the first
2s rows form a cycle under evolution with period 22t−s − 2s. In other
words, if r = 22t−s − 2s, then [Tm+r] = [Tm] for all m ≥ 2s.

Proof. An l-step shift of any row of [Tp] is the row itself since the
length of the CA is l. So l/(2s) times 2s-step shift of any row of [Tp] is
the row itself. But, by Proposition 3.2, (2t+1)th row of [Tp] is a 2s-step
shift of (2s + 1)th row of [Tp] from right to left. And the (2t + 1)th
row is the (2t − 2s)-step evolution of the (2s + 1)th row. Thus l/(2s)
times (2t − 2s)-step evolution of the (2s + 1)th row becomes the row of
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l/(2s) times 2s-step shift of the (2s + 1)th row, which is consequently
the (2s + 1)th row itself. Therefore (n+ 1)th row of [Tp] coincides with
the (2s + 1)th row when (n− 2s) = k · (2t − 2s) · l/(2s) for some positive
integer k. To get the least such n, let k = 1, then we have

n = (2t − 2s)l/(2s) + 2s

= (2t − 2s)(2t + 2s)/(2s) + 2s

= (22t − 22s)/(2s) + 2s

= 22t−s.

So all of the rows of [Tp] except the first 2s rows form a cycle under
evolution with period 22t−s − 2. Hence we have the conclusion.

Lemma 3.4. Let T be the characteristic matrix of the CA of length l
configured with rule 102 and periodic boundary condition. If 2t ≤ l for
some t ≥ 1, then we have

[Tp]2t,j = [T 2t−1]1,j =

{
1, if j ≤ 2t,

0, otherwise.

Proof. We will use induction on t ≥ 1. If t = 1 then it is clear. Let
t > 1, then

[Tp]2t−1,j = [T 2t−1−1]1,j =

{
1, if j ≤ 2t−1,

0, otherwise,

by induction hypothesis, and so we have

[Tp]2t−1+1,j = [T 2t−1

]1,j =

{
1, j = 1 or 2t−1 + 1,

0, otherwise.

In fact, the first 2t−1 entries of (2t−1 + 1)th row of [Tp] has the same
pattern with the first 2t−1 entries of the first row of [Tp] of which the
(2t−1 − 1)-step evolution makes 2t−1 entries which are all 1 by induction
hypothesis again. Thus the (2t−1 − 1)-step evolution of the first 2t−1

entries of the (2t−1 + 1)th row makes 2t−1 entries which are all 1. But
the first 2t−1 entries and the second 2t−1 entries of the (2t−1 + 1)th
row have the same pattern by the equation above. And the (2t−1 − 1)-
step evolution of the second 2t−1 entries is independent of other entries,
because the last 2t−1 − 1 entries of the second 2t−1 entries are all 0 and
because the 2t−1 − 1 entries preceded before the second 2t−1 entries are
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all 0. Therefore the (2t−1 − 1)-step evolution of the second 2t−1 entries
also makes 2t−1 entries which are all 1. This says that

[Tp]2t,j = [T 2t−1]1,j =

{
1, if j ≤ 2t,

0, otherwise.

This completes the induction.

By Lemma 3.4, we have the following theorem obviously.

Theorem 3.5. Let T be the characteristic matrix of the CA of length
l configured with rule 102 and periodic boundary condition. Let l = 2t

for some t ≥ 1. Then [Tp]2t+1,j = [T 2t ]1,j = 0 for all j and so (r)th row
of [Tp] is vanished if r > l. In other words, if r > l then [T r] = 0.

Finally, we will give another relation among some powers of the char-
acteristic matrix T of the CA of length l configured with rule 102 and
periodic boundary condition. For the purpose, we will start with two
lemmas. For explicit patterns of some rows in the proofs, refer to Table
2.

Lemma 3.6. Let T be the characteristic matrix of the CA of length
l configured with rule 102 and periodic boundary condition. And let
3 · 2s ≤ l with s ≥ 1. Assume that there are consecutive r iterations of
2s+1 entries of which the first half and second half are all 1 and all 0,
respectively, in (n)th row of [Tp] and the 2s entries preceded before the
iterations are all 0, where r ≥ 1. Then the (2s)-step evolution of the
iterations makes r iterations of 2s+1 entries, which are all 1, in (n+ s)th
row of [Tp].

Proof. By the assumption, the (2s)-step evolution of each of the itera-
tions is independent of other entries. And each of the iterations and the
first 2s+1 entries of (2s)th row of [Tp] have the same pattern by Lemma
3.4. So the (2s)-step evolution of each of the iterations and the (2s)-step
evolution of the first 2s+1 entries of the (2s)th row have the same pattern.
But the (2s)-step evolution of the (2s)th row is (2s+1)th row of [Tp] and
the first 2s+1 entries of the (2s+1)th row are all 1 by Lemma 3.4 again.
Thus the (2s)-step evolution of each of the iterations makes 2s+1 entries
which are all 1. Hence we have the conclusion.

Lemma 3.7. Let T be the characteristic matrix of the CA of length
l configured with rule 102 and periodic boundary condition. And let
2s+2 ≤ l with s ≥ 1. Assume that there is consecutive 2s+1 + 2s entries
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of which the first 2s+1 entries are all 1 and the remaining 2s entries are
all 0 in (n)th row of [Tp] and the 2s entries preceded before the iterations
are all 0. Then the (2s)-step evolution of the consecutive 2s+1+2s entries
makes 2s+1 + 2s entries, of which the first and the last 2s entries are all
1 and the middle 2s entries are all 0, in (n+ s)th row of [Tp].

Proof. By the assumption, the (2s)-step evolution of the consecutive
2s+1 + 2s entries is independent of other entries. And the consecutive
2s+1 + 2s entries and the first 2s+1 + 2s entries of the (2s+1)th row have
the same pattern. So the (2s)-step evolution of the consecutive 2s+1+2s

entries and the (2s)-step evolution of the first 2s+1 + 2s entries of the
(2s+1)th row have the same pattern. But the (2s)-step evolution of the
(2s+1)th row is (2s+1 +2s)th row of [Tp] and the first 2s+1 +2s entries of
the (2s+1 + 2s)th row are as in Table 2 by Lemma 2.2. Hence we have
the conclusion.

Table 2. Patterns of some rows

row values ∗

(l)th row 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0 · · · 1 · · · 1 0 · · · 0 1 · · · 1
(2s)th row 1 · · · 1 0 · · · 0 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 0 · · · 0

(2s+1)th row 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 0 · · · 0
(2s+1 + 2s)th row 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0 · · · 0 · · · 0 0 · · · 0 0 · · · 0
(2s)-step shift of
(2s+1)th row

from right to left
1 · · · 1 0 · · · 0 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 1 · · · 1

(2s)-step shift of
(2s+1 + 2s)th row
from right to left

0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 1 · · · 1

(l + 2s)th row 0 · · · 0 1 · · · 1 1 · · · 1 1 · · · 1 · · · 1 · · · 1 1 · · · 1 1 · · · 1
(l + 2s + 1)th row 1 · · · 0 1 · · · 0 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 0 · · · 0

∗ : 1 · · · 1 means 2s consecutive 1, 1 · · · 0 means one 1 and 2s − 1 consecutive 0,

and 0 · · · 0 means 2s consecutive 0.

Theorem 3.8. Let T be the characteristic matrix of the CA of length
l configured with rule 102 and periodic boundary condition. And let
l = 2t − 2s with t ≥ 2 and 0 ≤ s ≤ t − 2. Then all of the rows of [Tp]
except the first 2s rows form a cycle under evolution with period l. In
other words, [Tm+l] = [Tm] for all m ≥ 2s.
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Proof. We have

l − 1 = (2t − 2s)− 1

= (2t − 1)− 2s

= (1 · 20 + 1 · 21 + · · ·+ 1 · 2t−1)− 2s

= 1 · 20 + · · ·+ 1 · 2s−1 + 0 · 2s + 1 · 2s+1 + · · ·+ 1 · 2t−1

and

(l − 2s)/2s+1 = (2t − 2s − 2s)/2s+1 = 2t−s−1 − 1.

Thus, by Lemma 2.2, the entries of (l)th row of [Tp] consist of d iterations
of 2s+1 entries of which the first half and second half are all 1 and all 0,
respectively, where d = 2t−s−1− 1 and the last 2s entries of which values
are all 1 because the number of the entries l is a odd multiple of 2s. Then,
by Lemma 3.6, 2t − 2s+2 entries from (2s+1 + 1)th entry to (l − 2s)th
entry of (l+ 2s)th row of [Tp] are all 1, because the 2t − 2s+2 entries are
composed of d−1 iterations of 2s+1 entries which satisfies the assumption
of Lemma 3.6. For the remaining 2s+1+2s entries of the (l)th row, since
the boundary condition of the CA is periodic, the 2s+1+2sentries can be
considered as a consecutive entries of which the leading part is the last
2s entries of the (l)th row. Thus the remaining 2s+1 + 2sentries satisfies
the assumption of Lemma 3.7 because 2s entries preceded before the last
2s entries are all 0, in fact, the remaining 2s+1+2s entries coincides with
the corresponding entries of (2s)-step shift of (2s+1 + 1)th row of [Tp]
from right to left. Therefore, by Lemma 3.7, the last 2s entries and the
second 2s entries of the (l + 2s)th row are all 1 and the first 2s entries
of the (l + 2s)th row are all 0. Consequently, we have that the first 2s

entries of the (l + 2s)th row are all 0 and the remaining entries of the
(l + 2s)th row are all 1. Thus we easily have that both of the first and
(2s+1)th entries of (l+2s+1)th row of [Tp] are 1 and the remaining l−2
entries of the (l + 2s + 1)th row are all 0. Therefore the (l + 2s + 1)-th
row coincides with (2s + 1)th row of [Tp]. And we can easily see that l
is the least positive integer such that (l+ 2s + 1)th row of [Tp] coincides
with (2s + 1)th row of [Tp] by Lemma 2.1 and 2.2. This says that all
of the rows of [Tp] except the first 2s rows form a cycle under evolution
with period l. Hence we have the conclusion.

In Theorem 3.8, the case of l = 2t−2s and s = t−1 was excluded. In
fact, if l = 2t−2s and s = t−1, then l = 2s, and so the case is included in
Theorem 3.5. And, in the proof of Theorem 3.8, the (2s)-step evolution
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of the first 2s+1 entries of the (l)th row is not independent of the last 2s

entries of the (l)th row consists of 1’s, that is why the first 2s+1 entries
of the (l)th row is not included in the process in the first part of the
proof.
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