OSCILLATION CRITERIA OF DIFFERENTIAL EQUATIONS OF SECOND ORDER

Rak Joong Kim

Abstract. We give sufficient conditions that the homogeneous differential equations : for $t \geq t_{0}(>0)$,

$$
\begin{gathered}
x^{\prime \prime}(t)+q(t) x^{\prime}(t)+p(t) x(t)=0, \\
x^{\prime \prime}(t)+q(t) x^{\prime}(t)+F(t, x(\phi(t)))=0
\end{gathered}
$$

are oscillatory where $0 \leq \phi(t), 0<\phi^{\prime}(t), \lim _{t \rightarrow \infty} \phi(t)=\infty$ and $F(t, u)$. $\operatorname{sgn} \mathrm{u} \geq p(t)|u|$. We obtain comparison theorems.

1. Introduction

In this paper, we are concerned with the differential equations of the types : for $t \in I=\left[t_{0}, \infty\right), t_{0}>0$

$$
\begin{equation*}
x^{\prime \prime}(t)+q(t) x^{\prime}(t)+p(t) x(t)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime \prime}(t)+q(t) x^{\prime}(t)+F(t, x(\phi(t)))=0 \tag{2}
\end{equation*}
$$

where $0 \leq \phi(t), 0<\phi^{\prime}(t)$ and $\lim _{t \rightarrow \infty} \phi(t)=\infty$. Throughout of this paper the coefficients $p(t)$ and $q(t)$ satisfy
(A) $p(t)$ and $q(t)$ are real valued and locally integrable over I.
(B) $p(t)$ is not identically zero in any neighborhood of ∞.

We assume that
(H)

$$
\operatorname{sgn} F(t, u)=\operatorname{sgn} u \quad \text { and } \quad|F(t, u)| \geq p(t)|u|
$$

Received August 3, 2011. Revised September 5, 2011. Accepted September 10, 2011.

2000 Mathematics Subject Classification: 34C10, 34C15.
Key words and phrases: oscillation property, nonoscillation, sturm majorant, functional differential equation.

By a solution to (1) we mean a real valued function u that satisfies (1) in I and that u and u^{\prime} are locally absolutely continuous over I. We consider only nontrivial continuable solutions of (1). The usual existence theorems hold(see Naimark [6]). That is, given any real numbers c_{1} and c_{2} there is a unique solution u to (1) in I which satisfies $u\left(t_{0}\right)=c_{1}$ and $u^{\prime}\left(t_{0}\right)=c_{2}$.

Definition. A solution $x(t)$ of (1) is said to be oscillatory if it has arbitrarily large zeros over I, otherwise it is said to be nonoscillatory.

It is well known (see Reid [7]) that either all the solutions of (1) are nonoscillatory, or all the solutions are oscillatory. In the former case, we call the differential equation (1) nonoscillatory and in the later case, (1) oscillatory.

The investigation of the oscillation for the equation

$$
\begin{equation*}
\left(r(t) x^{\prime}(t)\right)^{\prime}+q(t) x(t)=0 \tag{E}
\end{equation*}
$$

may be done in the following many directions([1], [3]-[6], [10]) : among these, an often considered way is to determine "integral tests" involving functions r and q in order to obtain oscillatory criteria. An example is the following well-known Leighton's result(see [9]) : Every solution of (E) is oscillatory if

$$
\int_{0}^{\infty} \frac{1}{r(\sigma)} d \sigma=\infty, \quad \int_{0}^{\infty} q(\sigma) d \sigma=\infty .
$$

2. Main results

We need the following lemma which is due to Agarwal[8].
Lemma 2.1. Suppose that the following conditions are valid:
(i) $u \in C^{2}[T, \infty)$ for some $T>0$.
(ii) $u(t)>0, u^{\prime}(t)>0$ and $u^{\prime \prime}(t) \leq 0$ for $t \geq T>0$.

Then,
(a) for each $k_{1} \in(0,1)$, there exists a constant $T_{k_{1}} \geq T$ such that

$$
u(\phi(t)) \geq \frac{k_{1} \phi(t)}{t} u(t), \quad \text { for } \quad t \geq T_{k_{1}}
$$

(b) for each $k_{2} \in(0,1)$, there exists a constant $T_{k_{2}} \geq T$ such that

$$
u(t) \geq k_{2} t u^{\prime}(t), \quad \text { for } \quad t \geq T_{k_{2}} .
$$

Put $U(t)=\exp \int_{t_{0}}^{t} q(\sigma) d \sigma$.
Theorem 2.2. The equation (1) is oscillatory if for $t \geq t_{0}, p(t)>0$ and

$$
\begin{align*}
\int_{t_{0}}^{\infty} 1 / U(\sigma) d \sigma & =\infty \tag{3}\\
\int_{t_{0}}^{\infty}\left(p(\sigma)-\frac{q^{2}(\sigma)}{4}\right) d \sigma & =\infty \tag{4}
\end{align*}
$$

Proof. Assume that (1) is nonoscillatory. Then there exists a nonoscillatory solution $x(t)$ of (1). So we may assume that $x(t)>0$ on $\left[t_{1}, \infty\right)$ for some $t_{1} \geq t_{0}$. In the case of $x(t)<0$, we put $y(t)=-x(t)$. Since

$$
\begin{equation*}
\left(U(t) x^{\prime}(t)\right)^{\prime}=-U(t) p(t) x(t) \leq 0 . \tag{5}
\end{equation*}
$$

$U(t) x^{\prime}(t)$ is decreasing for $t \geq t_{1}$. Assume that $U\left(t_{1}\right) x^{\prime}\left(t_{1}\right)<0$ for some $t_{1} \geq t_{0}$. Put $C:=U\left(t_{1}\right) x^{\prime}\left(t_{1}\right)$. Then for $t \geq t_{1}$, we have

$$
\begin{equation*}
U(t) x^{\prime}(t) \leq C . \tag{6}
\end{equation*}
$$

Dividing both sides by $U(t)$ and integrating from t_{1} to $t\left(\geq t_{1}\right)$ we obtain for $t \geq t_{1}$,

$$
\begin{equation*}
x(t) \leq x\left(t_{1}\right)+C \int_{t_{1}}^{t} 1 / U(\sigma) d \sigma . \tag{7}
\end{equation*}
$$

Thus it follows that $x(t)<0$ for sufficiently large t and that $x^{\prime}(t)>0$ for $t \geq t_{1}$. Considering Ricatti transform

$$
\begin{equation*}
W(t)=\frac{x^{\prime}(t)}{x(t)} \quad \text { for } t \geq t_{1}, \tag{8}
\end{equation*}
$$

then we have

$$
\begin{align*}
W^{\prime}(t) & =-q(t) W(t)-p(t)-W^{2}(t) \\
& =-\left(W(t)+\frac{q(t)}{2}\right)^{2}-\left(p(t)-\frac{q(t)^{2}}{4}\right) . \tag{9}
\end{align*}
$$

Integrating (9) from t_{1} to $t\left(\geq t_{1}\right)$ we have

$$
\begin{equation*}
W(t)-W\left(t_{1}\right)+\int_{t_{1}}^{t}\left(p(\sigma)-\frac{q^{2}(\sigma)}{4}\right) d \sigma=-\int_{t_{1}}^{t}\left(W(\sigma)+\frac{q(\sigma)}{2}\right)^{2} d \sigma \tag{10}
\end{equation*}
$$

By means of (4) there exists a $t_{2} \geq t_{1}$ such that for $t \geq t_{2}$,

$$
\begin{equation*}
W(t) \leq-\int_{t_{1}}^{t}\left(W(\sigma)+\frac{q(\sigma)}{2}\right)^{2} d \sigma \tag{11}
\end{equation*}
$$

which is impossible because $W(t)>0$ for $t \geq t_{1}$.
We note (see [9]) that the equation $x^{\prime \prime}(t)+p(t) x(t)=0$ is oscillatory if

$$
\begin{equation*}
\int_{t_{0}}^{\infty} p(\sigma) d \sigma=\infty . \tag{12}
\end{equation*}
$$

Hence we can conclude that the differential equations (1) and $x^{\prime \prime}(t)+$ $p(t) x(t)=0$ are oscillatory if the estimates (3), (12) and $q(t) \in L^{2}\left[t_{0}, \infty\right)$ are valid.

Theorem 2.3. Assume that for $t \geq t_{0}, p(t) \geq 0$ and that the differential equation (1) has a solution $x(t)$ satisfying $x(t) x^{\prime}(t)<0$ for $t \geq t_{1}\left(>t_{0}\right)$. If

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \int_{t_{0}}^{\tau}\left(p(\sigma)-\frac{q^{2}(\sigma)}{4}\right) d \sigma d \tau=\infty \tag{13}
\end{equation*}
$$

then $\lim _{t \rightarrow \infty} x(t)=0$.
Proof. Let $x(t)$ be a solution of (1) such that $x(t) \cdot x^{\prime}(t)<0$ for $t \geq t_{1}$. Let $x(t)>0$ and $x^{\prime}(t)<0$ for $t \geq t_{1}$. Put $W(t)=x^{\prime}(t) / x(t)$ for $t \geq t_{1}$. By the method similar to the proof of theorem 2.2, we have

$$
W(t) \leq W\left(t_{1}\right)-\int_{t_{1}}^{t}\left(p(\sigma)-\frac{q^{2}(\sigma)}{4}\right) d \sigma .
$$

Integrating from t_{1} to $t\left(>t_{1}\right)$ we obtain

$$
\log \frac{x(t)}{x\left(t_{1}\right)} \leq W\left(t_{1}\right)\left(t-t_{1}\right)-\int_{t_{1}}^{t} \int_{t_{1}}^{\tau}\left(p(\sigma)-\frac{q^{2}(\sigma)}{4}\right) d \sigma d \tau
$$

By means of (13) we have our theorem. If $x(t)<0$ and $x^{\prime}(t)>0$ for $t \geq t_{1}$, a similar argument holds.

Corollary 2.4. Let $F(t, u)$ satisfy the condition (H). We assume that for $t \geq t_{0}, p(t)>0$, (3) and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} p(\sigma) U(\sigma) d \sigma=\infty \tag{14}
\end{equation*}
$$

are satisfied. Then the functional differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)+q(t) x^{\prime}(t)+F(t, x(t))=0 \tag{15}
\end{equation*}
$$

is oscillatory.
Proof. Multiplying (15) by the integrating factor $U(t)$ we obtain

$$
\left(U(t) x^{\prime}(t)\right)^{\prime}=-U(t) F(t, x(t)) .
$$

Assume that (15) is nonoscillatory. Then we may assume that there exists a nonoscillatory solution $x(t)>0$ on $\left[t_{1}, \infty\right)$ for some $t_{1} \geq t_{0}$. Put

$$
\begin{equation*}
W(t)=\frac{U(t) x^{\prime}(t)}{x(t)} \tag{16}
\end{equation*}
$$

for $t \geq t_{1}$. It is not difficult to show that $x^{\prime}(t)>0$ for $t \geq t_{1}$. Thus $W(t)>0$ for $t \geq t_{1}$. After differentiating $W(t)$, integrating this term from t_{1} to $t\left(>t_{1}\right)$, we have

$$
W(t) \leq W\left(t_{1}\right)-\int_{t_{1}}^{t} p(\sigma) U(\sigma) d \sigma-\int_{t_{1}}^{t} \frac{W^{2}(\sigma)}{U(\sigma)} d \sigma
$$

In view of (14) there exists a $t_{2} \geq t_{1}$ such that for $t \geq t_{2}$,

$$
W(t) \leq-\int_{t_{1}}^{t} \frac{W^{2}(\sigma)}{U(\sigma)} d \sigma
$$

which is impossible.
Theorem 2.5. Assume that (4) is valid. Then equation (1) is oscillatory if

$$
\begin{equation*}
q(t) \leq 0 \quad \text { and } \quad q^{\prime}(t) \leq 0 \text { for } \quad t \geq t_{0} \tag{17}
\end{equation*}
$$

Proof. Suppose that this is not the case. Then the solution $x(t)$ of (1) eventually nonzero exists. Without loss of generality, we may assume that $x(t)>0$ on $\left[t_{1}, \infty\right)$ for some $t_{1} \geq t_{0}$. The process of proof is similar to that of theorem 2.3. Putting $W(t)=x^{\prime}(t) / x(t)$ we have the equation (9). In view of (4), it follows that there exists a $t_{3} \geq t_{1}$ such that (11) is valid for $t \geq t_{3}$. Put

$$
\begin{equation*}
V(t)=-\int_{t_{1}}^{t}\left(W(\sigma)+\frac{q(\sigma)}{2}\right)^{2} d \sigma . \tag{18}
\end{equation*}
$$

Immediately we have

$$
V^{\prime}(t)=-\left(W(t)+\frac{q(t)}{2}\right)^{2} .
$$

In view of (17) we obtain

$$
\begin{equation*}
V^{\prime}(t)+\frac{q^{\prime}(t)}{2} \leq V^{\prime}(t) \leq-\left(V(t)+\frac{q(t)}{2}\right)^{2} . \tag{19}
\end{equation*}
$$

Multiplying both sides by $-1 /(V(t)+q(t) / 2)^{2}$ and integrating this term from t_{3} to $t\left(\geq t_{3}\right)$ we have

$$
\begin{equation*}
\frac{1}{V(t)+q(t) / 2}-\frac{1}{V\left(t_{3}\right)+q\left(t_{3}\right) / 2} \geq t-t_{3} . \tag{20}
\end{equation*}
$$

But this is impossible because

$$
\begin{equation*}
-\frac{1}{V\left(t_{3}\right)+q\left(t_{3}\right) / 2} \geq \frac{1}{V(t)+q(t) / 2}-\frac{1}{V\left(t_{3}\right)+q\left(t_{3}\right) / 2} \tag{21}
\end{equation*}
$$

and $\lim _{t \rightarrow \infty}\left(t-t_{3}\right)=+\infty$.
Corollary 2.6. Let $F(t, u)$ satisfy the condition (H). We assume that for $t \geq t_{0}$, (3) and (14) are satisfied. Then the equation (15) is oscillatory.

Proof. Multiplying (15) by the integrating factor $U(t)$ we obtain

$$
\left(U(t) x^{\prime}(t)\right)^{\prime}=-U(t) F(t, x(t))
$$

Assume that (15) is nonoscillatory. Then we may assume that there exist a nonoscillatory solution $x(t)$ and $t_{1}\left(>t_{0}\right)$ such that $x(t)>0$ on $\left[t_{1}, \infty\right)$. Put

$$
W(t)=\frac{U(t) x^{\prime}(t)}{x(t)}
$$

for $t \geq t_{1}$. After differentiating $W(t)$, integrating this term from t_{1} to $t\left(>t_{1}\right)$, we have

$$
W(t) \leq W\left(t_{1}\right)-\int_{t_{1}}^{t} p(s) U(s) d s-\int_{t_{1}}^{t} \frac{W^{2}(\sigma)}{U(\sigma)} d \sigma .
$$

In view of (14) there exists a $t_{2} \geq t_{1}$ such that for $t \geq t_{2}$,

$$
W(t) \leq-\int_{t_{1}}^{t} \frac{W^{2}(\sigma)}{U(\sigma)} d \sigma
$$

Put

$$
\begin{equation*}
X(t)=-\int_{t_{1}}^{t} \frac{W^{2}(\sigma)}{U(\sigma)} d \sigma \tag{22}
\end{equation*}
$$

Then $W(t) \leq X(t)<0$ for $t \geq t_{2}$. Since $X^{\prime}(t) \leq-\frac{X^{2}(t)}{U(t)}$, we get

$$
\begin{equation*}
\frac{1}{X(t)}-\frac{1}{X\left(t_{2}\right)} \geq \int_{t_{2}}^{t} \frac{1}{U(\sigma)} d \sigma \tag{23}
\end{equation*}
$$

But from the fact that

$$
-\frac{1}{X\left(t_{2}\right)} \geq \frac{1}{X(t)}-\frac{1}{X\left(t_{2}\right)}
$$

and (3), (23) is impossible.
Let $\phi(t) \leq t$ and $g(t)=\sup \left\{s \geq t_{0} \mid \phi(s) \leq t\right\}$. It is obvious that $t \leq g(t)$, and $\phi(s)=t$ if $g(t) \leq s$.

Theorem 2.7. Let $F(t, u)$ satisfy the condition (H). Assume that for $t \geq t_{0}, p(t) \geq 0, q(t) \geq 0$ and (3) are satisfied. Then the equation (2) is oscillatory if

$$
\begin{equation*}
\int_{t_{0}}^{\infty}\left(p(\sigma) \frac{\phi(\sigma)}{\sigma}-\frac{q^{2}(\sigma)}{4}\right) d \sigma=\infty \tag{24}
\end{equation*}
$$

is valid.
Proof. Assume the contrary that (2) is nonoscillatory. Let $x(t)$ be a nonoscillatory solution of (2). We may assume that there exists a $t_{1}\left(\geq t_{0}\right)$ such that $x(t)$ and $x(\phi(t))$ are positive for $t \geq t_{1}$. It follows that $x(t)>0, x^{\prime}(t)>0$ and that $x^{\prime \prime}(t) \leq 0$ for $t \geq t_{1}$. By Lemma 2.1, for each $k_{1} \in(0,1)$, there exists a constant $T_{k_{1}} \geq t_{1}$ such that

$$
x(\phi(t)) \geq \frac{k_{1} \phi(t)}{t} x(t), \quad \text { for } \quad t \geq T_{k_{1}} .
$$

Putting $W(t)=x^{\prime}(t) / x(t)$, for $t \geq T_{k_{1}}$ we have

$$
W^{\prime}(t) \leq-\left(k_{1} p(t) \frac{\phi(t)}{t}-\frac{q^{2}(t)}{4}\right)
$$

Integrating from $T_{k_{1}}$ to $t\left(>T_{k_{1}}\right)$ we obtain

$$
\begin{equation*}
W(t) \leq W\left(T_{k_{1}}\right)-\int_{T_{k_{1}}}^{t}\left(k_{1} p(\sigma) \frac{\phi(\sigma)}{\sigma}-\frac{q^{2}(\sigma)}{4}\right) d \sigma \tag{25}
\end{equation*}
$$

which leads us to a contradiction.

Theorem 2.8. Assume that for $t \geq t_{0}, p(t) \geq 0, q(t) \geq 0$ and (3) are satisfied. Then the equation (2) is oscillatory if either

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{t}{U(t)} \int_{t}^{\infty} p(\sigma) \frac{\phi(\sigma)}{\sigma} U(\sigma) d \sigma>1 \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim \sup _{t \rightarrow \infty} \frac{t}{U(t)} \int_{g(t)}^{\infty} p(\sigma) U(\sigma) d \sigma>1 \tag{27}
\end{equation*}
$$

is valid.
Proof. Assume that (2) is nonoscillatory. Let $x(t)$ be a nonoscillatory solution of (2). We may assume that $x(t)$ and $x(\phi(t))$ are positive for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. It is clear that there exists a $t_{2}\left(\geq t_{1}\right)$ such that $x^{\prime}(t)>0$ for $t \geq t_{2}$. Then it follows that $x^{\prime \prime}(t) \leq 0$ for $t \geq t_{2}$. Thus (a) and (b) of lemma 2.1 hold. For each $k_{1} \in(0,1)$, there exists a constant $T_{k_{1}} \geq t_{0}$ such that $x(\phi(t)) \geq \frac{k_{1} \phi(t)}{t} x(t)$ for $t \geq T_{k_{1}}$ and for each $k_{2} \in(0,1)$, there exists a constant $T_{k_{2}} \geq t_{0}$ such that $x(t) \geq k_{2} t x^{\prime}(t)$ for $t \geq T_{k_{2}}$. Since $\left(U(t) x^{\prime}(t)\right)^{\prime}=-U(t) F(t, x(\phi(t)))$, we have, for $t \geq \max \left\{t_{2}, T_{k_{1}}, T_{k_{2}}\right\}$,

$$
\begin{align*}
U(t) x^{\prime}(t) & \geq \int_{t}^{\infty} U(\sigma) F(\sigma, \phi(\sigma)) d \sigma \\
& \geq \int_{t}^{\infty} p(\sigma) x(\phi(\sigma)) U(\sigma) d \sigma \tag{28}\\
& \geq \int_{t}^{\infty} p(\sigma) \frac{k_{1} \phi(s)}{s} U(\sigma) d \sigma \cdot x(t)
\end{align*}
$$

Moreover, since

$$
\begin{equation*}
x^{\prime}(t) \geq \frac{1}{U(t)} \int_{t}^{\infty} p(\sigma) \frac{k_{1} \phi(\sigma)}{\sigma} U(\sigma) d \sigma \cdot x(t) . \tag{29}
\end{equation*}
$$

and $x(t) \geq k_{2} t x^{\prime}(t)$, we obtain

$$
\begin{equation*}
1 \geq \frac{k_{1} k_{2} t}{U(t)} \int_{t}^{\infty} p(\sigma) \frac{\phi(\sigma)}{\sigma} U(\sigma) d \sigma \tag{30}
\end{equation*}
$$

Thus it follows that there exists a constant $c>0$ such that

$$
\begin{equation*}
c=\lim \sup _{t \rightarrow \infty} \frac{t}{U(t)} \int_{t}^{\infty} p(\sigma) \frac{\phi(\sigma)}{\sigma} U(\sigma) d \sigma \tag{31}
\end{equation*}
$$

holds. Assume that $c>1$. There exists a sequence $\left\{t_{n}\right\}$ such that $\lim _{n \rightarrow \infty} t_{n}=\infty$ and

$$
\begin{equation*}
c=\lim _{n \rightarrow \infty} \frac{t_{n}}{U\left(t_{n}\right)} \int_{t_{n}}^{\infty} p(\sigma) \frac{\phi(\sigma)}{\sigma} U(\sigma) d \sigma \tag{32}
\end{equation*}
$$

Choose $\epsilon=\frac{c-1}{2}>0$. Then for large n, we have

$$
\begin{equation*}
\frac{c+1}{2}=c-\epsilon<\frac{t_{n}}{U\left(t_{n}\right)} \int_{t_{n}}^{\infty} p(\sigma) \frac{\phi(\sigma)}{\sigma} U(\sigma) d \sigma . \tag{33}
\end{equation*}
$$

If we take $0<\frac{2}{c+1}=M<1$. Then from (31) and (33) we have

$$
1 \geq \frac{M t_{n}}{U\left(t_{n}\right)} \int_{t_{n}}^{\infty} p(\sigma) \frac{\phi(\sigma)}{\sigma} U(\sigma) d \sigma>M \cdot \frac{c+1}{2}=1
$$

which is a contradiction. Since $\phi(\sigma)=t$ if $g(t) \leq \sigma, x^{\prime}(t)>0$ and $t \geq \max \left\{t_{2}, T_{k_{1}}, T_{k_{2}}\right\}$, we find

$$
\begin{aligned}
x(t) & \geq k_{2} t x^{\prime}(t) \\
& \geq \frac{k_{2} t}{U(t)} \int_{t}^{\infty} p(\sigma) x(\phi(\sigma)) U(\sigma) d \sigma \\
& \geq \frac{k_{2} t}{U(t)} \int_{g(t)}^{\infty} p(\sigma) x(\phi(\sigma)) U(\sigma) d \sigma \\
& \geq \frac{k_{2} t}{U(t)} \int_{g(t)}^{\infty} p(\sigma) U(\sigma) d \sigma \cdot x(t) .
\end{aligned}
$$

Since

$$
1 \geq \frac{k_{2} t}{U(t)} \int_{g(t)}^{\infty} p(\sigma) U(\sigma) d \sigma
$$

the limit

$$
\begin{equation*}
\lim \sup _{t \rightarrow \infty} \frac{t}{U(t)} \int_{g(t)}^{\infty} p(\sigma) U(\sigma) d \sigma=d \tag{34}
\end{equation*}
$$

exists. Assume that $d>1$. There exists a sequence $\left\{T_{n}\right\}$ such that $\lim _{n \rightarrow \infty} T_{n}=\infty$ and

$$
d=\lim _{n \rightarrow \infty} \frac{T_{n}}{U\left(T_{n}\right)} \int_{g\left(T_{n}\right)}^{\infty} p(\sigma) U(\sigma) d \sigma
$$

Choose $\epsilon=\frac{d-1}{2}>0$. Then there exists a N such that $n \geq N$ implies

$$
\begin{equation*}
\frac{d+1}{2}=d-\epsilon<\frac{T_{n}}{U\left(T_{n}\right)} \int_{g\left(T_{n}\right)}^{\infty} p(\sigma) U(\sigma) d \sigma \tag{35}
\end{equation*}
$$

If we take $0<\frac{2}{d+1}=M^{\prime}<1$. Then from (34) and (35) we have

$$
1 \geq \frac{M^{\prime} T_{n}}{U\left(T_{n}\right)} \int_{g\left(T_{n}\right)}^{\infty} p(\sigma) U(\sigma) d \sigma>M^{\prime} \cdot \frac{d+1}{2}=1
$$

which is impossible.
Example 2.9. Let $\phi(t)=t / 2$ and $t_{0}=1$. Consider the following functional differential equation:
(E_{1})

$$
x^{\prime \prime}(t)+x^{\prime}(t)+\frac{3}{t^{2}} F(t, x(t / 2))=0 .
$$

Since

$$
\begin{aligned}
\frac{t}{e^{t}} \int_{t}^{\infty} \frac{3}{\sigma^{2}} \frac{\sigma / 2}{\sigma} e^{\sigma} d \sigma & \geq \frac{1}{2} \cdot \frac{t}{e^{t}} \int_{t}^{\infty} \frac{3}{\sigma^{2}} d \sigma \cdot e^{t} \\
& \geq \frac{t}{2} \cdot \frac{3}{t} \\
& =\frac{3}{2}>1,
\end{aligned}
$$

the inequality (26) holds. It follows that $\left(E_{1}\right)$ is oscillatory.
Now we obtain comparison theorems.
Theorem 2.10. Let $p_{1}(t)$ be real valued and locally integrable over I. Assume that (3) and (4) are satisfied. If $0<p(t) \leq p_{1}(t)$ on I then

$$
\begin{equation*}
x^{\prime \prime}(t)+q(t) x^{\prime}(t)+p_{1}(t) x(t)=0 \tag{36}
\end{equation*}
$$

is oscillatory.
Theorem 2.11. Let $p_{1}(t)$ be real valued and locally integrable over I. Assume that $q(t)<0$ on I and that the equation (36) is nonoscillatory. If $p(t) \leq p_{1}(t) U(t)$ on I, then

$$
\begin{equation*}
x^{\prime \prime}(t)+p(t) x(t)=0 \tag{37}
\end{equation*}
$$

is also nonoscillatory.

Proof. We note that $0<U(t) \leq 1$ and $p(t) \leq p_{1}(t) U(t)$. The equation (36) becomes

$$
\left(U(t) x^{\prime}(t)\right)^{\prime}+p_{1}(t) U(t) x(t)=0
$$

which is a Sturm majorant for (37)(See [2]).
Theorem 2.12. Let $p_{1}(t), q_{1}(t)$ be real valued and locally integrable over I. Assume that $q(t) \geq q_{1}(t)$ and $p(t) U(t) \leq p_{1}(t) \exp \int_{t_{0}}^{t} q_{1}(\sigma) d \sigma$ on I.

$$
x^{\prime \prime}(t)+q_{1}(t) x^{\prime}(t)+p_{1}(t) x(t)=0
$$

is also oscillatory if the differential equation (1) is oscillatory.

References

[1] S. Breuer and D. Gottlieb, Hille-Wintner type oscillationcriteria for linear ordinary differential equations of second order, Ann. Polon. Math. 30 (1975), 257262.
[2] P. Hartman, Ordinary differential equations, John Wiley \& Sons, Inc., New York-London-Sydney, 1964.
[3] Hishyar Kh. Abdullah, A note on the oscillation of second order differential equations, Czechoslovak Math. Jour. Publ. 54 (2004), no. 4, 949-954.
[4] Horng-Jaan Li, Nonoscillation characterizations of a second order linear differential equations, Math. Nachr. 219 (2000), 147-161.
[5] Horng-Jaan Li, and C.C. Yeh, On the nonoscillatory behavior of solutions of a second order linear differential equation, Math. Nachr. 182 (1996), 295-315.
[6] M.A. Naimark, Linear differential operators, Part I, II, Ungar. New York, 1967, 1968.
[7] W.T. Reid, Sturmian theory for ordinary differential equations, Springer-Verlag, New York, 1980.
[8] R.P. Agarwal, S.-L. Shieh. and C.C. Yeh, Oscillation criteria for second order retarded differential equations, Math. Comput. Modelling 26 (1997), no. 4, 1-11.
[9] C.A. Swanson, Comparison and oscillation theory of linear differential equations, Academis Press, New York, 1968.
[10] A. Wintner, On the comparison theorem of Kneser-Hille, Math. Scand. 5 (1957), 255-260.

Department of Mathematics
Hallym University
Chun-cheon, Gangwon-Do
200-702, Korea
E-mail: rjkim@hallym.ac.kr

