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OSCILLATION CRITERIA OF DIFFERENTIAL

EQUATIONS OF SECOND ORDER

Rak Joong Kim

Abstract. We give sufficient conditions that the homogeneous dif-
ferential equations : for t ≥ t0(> 0),

x′′(t) + q(t)x′(t) + p(t)x(t) = 0,

x′′(t) + q(t)x′(t) + F (t, x(ϕ(t))) = 0

are oscillatory where 0 ≤ ϕ(t), 0 < ϕ′(t), lim
t→∞

ϕ(t) = ∞ and F (t, u) ·
sgn u ≥ p(t)|u|. We obtain comparison theorems.

1. Introduction

In this paper, we are concerned with the differential equations of the
types : for t ∈ I = [t0,∞), t0 > 0

(1) x′′(t) + q(t)x′(t) + p(t)x(t) = 0

and

(2) x′′(t) + q(t)x′(t) + F (t, x(ϕ(t))) = 0

where 0 ≤ ϕ(t), 0 < ϕ′(t) and lim
t→∞

ϕ(t) = ∞. Throughout of this paper

the coefficients p(t) and q(t) satisfy

(A) p(t) and q(t) are real valued and locally integrable over I.
(B) p(t) is not identically zero in any neighborhood of ∞.

We assume that

(H) sgnF (t, u) = sgnu and |F (t, u)| ≥ p(t)|u|.
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By a solution to (1) we mean a real valued function u that satisfies
(1) in I and that u and u′ are locally absolutely continuous over I. We
consider only nontrivial continuable solutions of (1). The usual existence
theorems hold(see Naimark [6]). That is, given any real numbers c1 and
c2 there is a unique solution u to (1) in I which satisfies u(t0) = c1 and
u′(t0) = c2.

Definition. A solution x(t) of (1) is said to be oscillatory if it has
arbitrarily large zeros over I, otherwise it is said to be nonoscillatory.

It is well known (see Reid [7]) that either all the solutions of (1) are
nonoscillatory, or all the solutions are oscillatory. In the former case, we
call the differential equation (1) nonoscillatory and in the later case, (1)
oscillatory.

The investigation of the oscillation for the equation

(E) (r(t)x′(t))
′
+ q(t)x(t) = 0

may be done in the following many directions([1], [3]-[6], [10]) : among
these, an often considered way is to determine ”integral tests” involving
functions r and q in order to obtain oscillatory criteria. An example is
the following well-known Leighton’s result(see [9]) : Every solution of
(E) is oscillatory if∫ ∞

0

1

r(σ)
dσ = ∞,

∫ ∞

0

q(σ) dσ = ∞.

2. Main results

We need the following lemma which is due to Agarwal[8].

Lemma 2.1. Suppose that the following conditions are valid :

(i) u ∈ C2[T,∞) for some T > 0.
(ii) u(t) > 0, u′(t) > 0 and u′′(t) ≤ 0 for t ≥ T > 0.

Then,

(a) for each k1 ∈ (0, 1), there exists a constant Tk1 ≥ T such that

u(ϕ(t)) ≥ k1ϕ(t)

t
u(t), for t ≥ Tk1

(b) for each k2 ∈ (0, 1), there exists a constant Tk2 ≥ T such that

u(t) ≥ k2tu
′(t), for t ≥ Tk2 .
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Put U(t) = exp
∫ t

t0
q(σ) dσ.

Theorem 2.2. The equation (1) is oscillatory if for t ≥ t0, p(t) > 0
and ∫ ∞

t0

1/U(σ) dσ = ∞,(3) ∫ ∞

t0

(
p(σ)− q2(σ)

4

)
dσ = ∞.(4)

Proof. Assume that (1) is nonoscillatory. Then there exists a nonoscil-
latory solution x(t) of (1). So we may assume that x(t) > 0 on [t1,∞)
for some t1 ≥ t0. In the case of x(t) < 0, we put y(t) = −x(t). Since

(5) (U(t)x′(t))
′
= −U(t)p(t)x(t) ≤ 0.

U(t)x′(t) is decreasing for t ≥ t1. Assume that U(t1)x
′(t1) < 0 for some

t1 ≥ t0. Put C := U(t1)x
′(t1). Then for t ≥ t1, we have

(6) U(t)x′(t) ≤ C.

Dividing both sides by U(t) and integrating from t1 to t (≥ t1) we obtain
for t ≥ t1,

(7) x(t) ≤ x(t1) + C

∫ t

t1

1/U(σ) dσ.

Thus it follows that x(t) < 0 for sufficiently large t and that x′(t) > 0
for t ≥ t1. Considering Ricatti transform

(8) W (t) =
x′(t)

x(t)
for t ≥ t1,

then we have

W ′(t) = −q(t)W (t)− p(t)−W 2(t)

= −
(
W (t) +

q(t)

2

)2

−
(
p(t)− q(t)2

4

)
.

(9)

Integrating (9) from t1 to t(≥ t1) we have
(10)

W (t)−W (t1) +

∫ t

t1

(
p(σ)− q2(σ)

4

)
dσ = −

∫ t

t1

(
W (σ) +

q(σ)

2

)2

dσ.
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By means of (4) there exists a t2 ≥ t1 such that for t ≥ t2,

(11) W (t) ≤ −
∫ t

t1

(
W (σ) +

q(σ)

2

)2

dσ,

which is impossible because W (t) > 0 for t ≥ t1.

We note (see [9])that the equation x′′(t) + p(t)x(t) = 0 is oscillatory
if

(12)

∫ ∞

t0

p(σ) dσ = ∞.

Hence we can conclude that the differential equations (1) and x′′(t) +
p(t)x(t) = 0 are oscillatory if the estimates (3), (12) and q(t) ∈ L2[t0,∞)
are valid.

Theorem 2.3. Assume that for t ≥ t0, p(t) ≥ 0 and that the dif-
ferential equation (1) has a solution x(t) satisfying x(t)x′(t) < 0 for
t ≥ t1(> t0). If

(13)

∫ ∞

t0

∫ τ

t0

(
p(σ)− q2(σ)

4

)
dσ dτ = ∞

then lim
t→∞

x(t) = 0.

Proof. Let x(t) be a solution of (1) such that x(t) ·x′(t) < 0 for t ≥ t1.
Let x(t) > 0 and x′(t) < 0 for t ≥ t1. Put W (t) = x′(t)/x(t) for t ≥ t1.
By the method similar to the proof of theorem 2.2, we have

W (t) ≤ W (t1)−
∫ t

t1

(
p(σ)− q2(σ)

4

)
dσ.

Integrating from t1 to t(> t1) we obtain

log
x(t)

x(t1)
≤ W (t1)(t− t1)−

∫ t

t1

∫ τ

t1

(
p(σ)− q2(σ)

4

)
dσ dτ.

By means of (13) we have our theorem. If x(t) < 0 and x′(t) > 0 for
t ≥ t1, a similar argument holds.

Corollary 2.4. Let F (t, u) satisfy the condition (H). We assume
that for t ≥ t0, p(t) > 0, (3) and

(14)

∫ ∞

t0

p(σ)U(σ) dσ = ∞
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are satisfied. Then the functional differential equation

(15) x′′(t) + q(t)x′(t) + F (t, x(t)) = 0

is oscillatory.

Proof. Multiplying (15) by the integrating factor U(t) we obtain

(U(t)x′(t))
′
= −U(t)F (t, x(t)).

Assume that (15) is nonoscillatory. Then we may assume that there
exists a nonoscillatory solution x(t) > 0 on [t1,∞) for some t1 ≥ t0. Put

(16) W (t) =
U(t)x′(t)

x(t)

for t ≥ t1. It is not difficult to show that x′(t) > 0 for t ≥ t1. Thus
W (t) > 0 for t ≥ t1. After differentiating W (t), integrating this term
from t1 to t(> t1), we have

W (t) ≤ W (t1)−
∫ t

t1

p(σ)U(σ) dσ −
∫ t

t1

W 2(σ)

U(σ)
dσ.

In view of (14) there exists a t2 ≥ t1 such that for t ≥ t2,

W (t) ≤ −
∫ t

t1

W 2(σ)

U(σ)
dσ,

which is impossible.

Theorem 2.5. Assume that (4) is valid. Then equation (1) is oscil-
latory if

(17) q(t) ≤ 0 and q′(t) ≤ 0 for t ≥ t0.

Proof. Suppose that this is not the case. Then the solution x(t) of
(1) eventually nonzero exists. Without loss of generality, we may assume
that x(t) > 0 on [t1,∞) for some t1 ≥ t0. The process of proof is similar
to that of theorem 2.3. Putting W (t) = x′(t)/x(t) we have the equation
(9). In view of (4), it follows that there exists a t3 ≥ t1 such that (11) is
valid for t ≥ t3. Put

(18) V (t) = −
∫ t

t1

(
W (σ) +

q(σ)

2

)2

dσ.

Immediately we have

V ′(t) = −
(
W (t) +

q(t)

2

)2

.
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In view of (17) we obtain

(19) V ′(t) +
q′(t)

2
≤ V ′(t) ≤ −

(
V (t) +

q(t)

2

)2

.

Multiplying both sides by −1/ (V (t) + q(t)/2)2 and integrating this term
from t3 to t (≥ t3) we have

(20)
1

V (t) + q(t)/2
− 1

V (t3) + q(t3)/2
≥ t− t3.

But this is impossible because

(21) − 1

V (t3) + q(t3)/2
≥ 1

V (t) + q(t)/2
− 1

V (t3) + q(t3)/2

and lim
t→∞

(t− t3) = +∞.

Corollary 2.6. Let F (t, u) satisfy the condition (H). We assume
that for t ≥ t0, (3) and (14) are satisfied. Then the equation (15) is
oscillatory.

Proof. Multiplying (15) by the integrating factor U(t) we obtain

(U(t)x′(t))
′
= −U(t)F (t, x(t)).

Assume that (15) is nonoscillatory. Then we may assume that there
exist a nonoscillatory solution x(t) and t1(> t0) such that x(t) > 0 on
[t1,∞). Put

W (t) =
U(t)x′(t)

x(t)

for t ≥ t1. After differentiating W (t), integrating this term from t1 to
t(> t1), we have

W (t) ≤ W (t1)−
∫ t

t1

p(s)U(s) ds−
∫ t

t1

W 2(σ)

U(σ)
dσ.

In view of (14) there exists a t2 ≥ t1 such that for t ≥ t2,

W (t) ≤ −
∫ t

t1

W 2(σ)

U(σ)
dσ.

Put

(22) X(t) = −
∫ t

t1

W 2(σ)

U(σ)
dσ.
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Then W (t) ≤ X(t) < 0 for t ≥ t2. Since X ′(t) ≤ −X2(t)

U(t)
, we get

(23)
1

X(t)
− 1

X(t2)
≥

∫ t

t2

1

U(σ)
dσ.

But from the fact that

− 1

X(t2)
≥ 1

X(t)
− 1

X(t2)

and (3), (23) is impossible.

Let ϕ(t) ≤ t and g(t) = sup{s ≥ t0 |ϕ(s) ≤ t}. It is obvious that
t ≤ g(t), and ϕ(s) = t if g(t) ≤ s.

Theorem 2.7. Let F (t, u) satisfy the condition (H). Assume that for
t ≥ t0, p(t) ≥ 0, q(t) ≥ 0 and (3) are satisfied. Then the equation (2) is
oscillatory if

(24)

∫ ∞

t0

(
p(σ)

ϕ(σ)

σ
− q2(σ)

4

)
dσ = ∞

is valid.

Proof. Assume the contrary that (2) is nonoscillatory. Let x(t) be
a nonoscillatory solution of (2). We may assume that there exists a
t1(≥ t0) such that x(t) and x(ϕ(t)) are positive for t ≥ t1. It follows that
x(t) > 0, x′(t) > 0 and that x′′(t) ≤ 0 for t ≥ t1. By Lemma 2.1, for
each k1 ∈ (0, 1), there exists a constant Tk1 ≥ t1 such that

x(ϕ(t)) ≥ k1ϕ(t)

t
x(t), for t ≥ Tk1 .

Putting W (t) = x′(t)/x(t), for t ≥ Tk1 we have

W ′(t) ≤ −
(
k1p(t)

ϕ(t)

t
− q2(t)

4

)
.

Integrating from Tk1 to t(> Tk1) we obtain

(25) W (t) ≤ W (Tk1)−
∫ t

Tk1

(
k1p(σ)

ϕ(σ)

σ
− q2(σ)

4

)
dσ,

which leads us to a contradiction.
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Theorem 2.8. Assume that for t ≥ t0, p(t) ≥ 0, q(t) ≥ 0 and (3) are
satisfied. Then the equation (2) is oscillatory if either

(26) lim supt→∞
t

U(t)

∫ ∞

t

p(σ)
ϕ(σ)

σ
U(σ) dσ > 1

or

(27) lim supt→∞
t

U(t)

∫ ∞

g(t)

p(σ)U(σ) dσ > 1

is valid.

Proof. Assume that (2) is nonoscillatory. Let x(t) be a nonoscilla-
tory solution of (2). We may assume that x(t) and x(ϕ(t)) are positive
for t ≥ t1 for some t1 ≥ t0. It is clear that there exists a t2(≥ t1) such
that x′(t) > 0 for t ≥ t2. Then it follows that x′′(t) ≤ 0 for t ≥ t2.
Thus (a) and (b) of lemma 2.1 hold. For each k1 ∈ (0, 1), there ex-

ists a constant Tk1 ≥ t0 such that x(ϕ(t)) ≥ k1ϕ(t)

t
x(t) for t ≥ Tk1

and for each k2 ∈ (0, 1), there exists a constant Tk2 ≥ t0 such that
x(t) ≥ k2tx

′(t) for t ≥ Tk2 . Since (U(t)x′(t))′ = −U(t)F (t, x(ϕ(t))), we
have, for t ≥ max{t2, Tk1 , Tk2},

U(t)x′(t) ≥
∫ ∞

t

U(σ)F (σ, ϕ(σ)) dσ

≥
∫ ∞

t

p(σ)x(ϕ(σ))U(σ) dσ(28)

≥
∫ ∞

t

p(σ)
k1ϕ(s)

s
U(σ) dσ · x(t).

Moreover, since

(29) x′(t) ≥ 1

U(t)

∫ ∞

t

p(σ)
k1ϕ(σ)

σ
U(σ) dσ · x(t).

and x(t) ≥ k2tx
′(t), we obtain

(30) 1 ≥ k1k2t

U(t)

∫ ∞

t

p(σ)
ϕ(σ)

σ
U(σ) dσ.

Thus it follows that there exists a constant c > 0 such that

(31) c = lim sup
t→∞

t

U(t)

∫ ∞

t

p(σ)
ϕ(σ)

σ
U(σ) dσ
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holds. Assume that c > 1. There exists a sequence {tn} such that
lim
n→∞

tn = ∞ and

(32) c = lim
n→∞

tn
U(tn)

∫ ∞

tn

p(σ)
ϕ(σ)

σ
U(σ) dσ.

Choose ϵ =
c− 1

2
> 0. Then for large n, we have

(33)
c+ 1

2
= c− ϵ <

tn
U(tn)

∫ ∞

tn

p(σ)
ϕ(σ)

σ
U(σ) dσ.

If we take 0 <
2

c+ 1
= M < 1. Then from (31) and (33) we have

1 ≥ Mtn
U(tn)

∫ ∞

tn

p(σ)
ϕ(σ)

σ
U(σ) dσ > M · c+ 1

2
= 1,

which is a contradiction. Since ϕ(σ) = t if g(t) ≤ σ, x′(t) > 0 and
t ≥ max{t2, Tk1 , Tk2}, we find

x(t) ≥ k2tx
′(t)

≥ k2t

U(t)

∫ ∞

t

p(σ)x(ϕ(σ))U(σ) dσ

≥ k2t

U(t)

∫ ∞

g(t)

p(σ)x(ϕ(σ))U(σ) dσ

≥ k2t

U(t)

∫ ∞

g(t)

p(σ)U(σ) dσ · x(t).

Since

1 ≥ k2t

U(t)

∫ ∞

g(t)

p(σ)U(σ) dσ,

the limit

(34) lim sup
t→∞

t

U(t)

∫ ∞

g(t)

p(σ)U(σ) dσ = d

exists. Assume that d > 1. There exists a sequence {Tn} such that
lim
n→∞

Tn = ∞ and

d = lim
n→∞

Tn

U(Tn)

∫ ∞

g(Tn)

p(σ)U(σ) dσ.
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Choose ϵ =
d− 1

2
> 0. Then there exists a N such that n ≥ N implies

(35)
d+ 1

2
= d− ϵ <

Tn

U(Tn)

∫ ∞

g(Tn)

p(σ)U(σ) dσ.

If we take 0 <
2

d+ 1
= M ′ < 1. Then from (34) and (35) we have

1 ≥ M ′Tn

U(Tn)

∫ ∞

g(Tn)

p(σ)U(σ) dσ > M ′ · d+ 1

2
= 1,

which is impossible.

Example 2.9. Let ϕ(t) = t/2 and t0 = 1. Consider the following
functional differential equation:

(E1) x′′(t) + x′(t) +
3

t2
F (t, x(t/2)) = 0.

Since

t

et

∫ ∞

t

3

σ2

σ/2

σ
eσ dσ ≥ 1

2
· t

et

∫ ∞

t

3

σ2
dσ · et

≥ t

2
· 3
t

=
3

2
> 1,

the inequality (26) holds. It follows that (E1) is oscillatory.
Now we obtain comparison theorems.

Theorem 2.10. Let p1(t) be real valued and locally integrable over
I. Assume that (3) and (4) are satisfied. If 0 < p(t) ≤ p1(t) on I then

(36) x′′(t) + q(t)x′(t) + p1(t)x(t) = 0

is oscillatory.

Theorem 2.11. Let p1(t) be real valued and locally integrable over I.
Assume that q(t) < 0 on I and that the equation (36) is nonoscillatory.
If p(t) ≤ p1(t)U(t) on I, then

(37) x′′(t) + p(t)x(t) = 0

is also nonoscillatory.
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Proof. We note that 0 < U(t) ≤ 1 and p(t) ≤ p1(t)U(t). The equa-
tion (36) becomes

(U(t)x′(t))
′
+ p1(t)U(t)x(t) = 0

which is a Sturm majorant for (37)(See [2]).

Theorem 2.12. Let p1(t), q1(t) be real valued and locally integrable

over I. Assume that q(t) ≥ q1(t) and p(t)U(t) ≤ p1(t) exp
∫ t

t0
q1(σ) dσ

on I.
x′′(t) + q1(t)x

′(t) + p1(t)x(t) = 0

is also oscillatory if the differential equation (1) is oscillatory.
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