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STABILITY OF THE JENSEN TYPE FUNCTIONAL

EQUATION IN BANACH ALGEBRAS: A FIXED POINT

APPROACH

Choonkil Park, Won-Gil Park∗, Jung Rye Lee and
Themistocles M. Rassias

Abstract. Using fixed point methods, we prove the generalized
Hyers-Ulam stability of homomorphisms in Banach algebras and of
derivations on Banach algebras for the following Jensen type func-
tional equation:

f

(
x+ y

2

)
+ f

(
x− y

2

)
= f(x).

1. Introduction and preliminaries

The stability problem of functional equations was originated from a
question of Ulam [30] concerning the stability of group homomorphisms:
Let (G1, ⋆) be a group and let (G2, ⋄, d) be a metric group with the
metric d(·, ·). Given ε > 0, does there exist a δ(ε) > 0 such that if a
mapping h : G1 → G2 satisfies the inequality

d(h(x ⋆ y), h(x) ⋄ h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε
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for all x ∈ G1? If the answer is affirmative, we would say that the
equation of homomorphism H(x ⋆ y) = H(x) ⋄ H(y) is stable. The
concept of stability for a functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equations is that how
do the solutions of the inequality differ from those of the given functional
equation?

Hyers [8] gave a first affirmative partial answer to the question of
Ulam for Banach spaces. Let X and Y be Banach spaces. Assume that
f : X → Y satisfies

∥f(x+ y)− f(x)− f(y)∥ ≤ ε

for all x, y ∈ X and some ε ≥ 0. Then there exists a unique additive
mapping T : X → Y such that

∥f(x)− T (x)∥ ≤ ε

for all x ∈ X.
Th.M. Rassias [20] provided a generalization of Hyers’ Theorem which

allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : E → E ′ be a mapping from
a normed vector space E into a Banach space E ′ subject to the inequality

(1.1) ∥f(x+ y)− f(x)− f(y)∥ ≤ ε(∥x∥p + ∥y∥p)
for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then
the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E ′ is the unique additive mapping
which satisfies

∥f(x)− L(x)∥ ≤ 2ε

2− 2p
∥x∥p

for all x ∈ E. Also, if for each x ∈ E the mapping f(tx) is continuous
in t ∈ R, then L is R-linear.

The above inequality (1.1) that was introduced for the first time by
Th.M. Rassias [20] for the proof of the stability of the linear mapping
between Banach spaces has provided a lot of influence in the develop-
ment of what is now known as generalized Hyers-Ulam stability or as
Hyers-Ulam-Rassias stability of functional equations. Beginning around
the year 1980 the topic of approximate homomorphisms, or the stability
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of the equation of homomorphism, was studied by a number of math-
ematicians. Găvruta [7] extended the Hyers-Ulam stability by proving
the following theorem in the spirit of Th.M. Rassias’ approach.

Theorem 1.2. [7] Let f : E → E ′ be a mapping for which there
exists a function φ : E × E ′ → [0,∞) such that

φ̃(x, y) :=
∞∑
j=0

2−jφ(2jx, 2jy) < ∞,

∥f(x+ y)− f(x)− f(y)∥ ≤ φ(x, y)

for all x, y ∈ E. Then there exists a unique additive mapping T : E → E ′

such that

∥f(x)− T (x)∥ ≤ 1

2
φ̃(x, x)

for all x ∈ E.

The stability problems of several functional equations have been ex-
tensively investigated by a number of authors and there are many inter-
esting results concerning this problem (see [1, 2, 4, 5, 10, 11, 13, 14, 15,
16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29]).

We recall the following theorem by Diaz and Margolis. The reader is
referred to the book of D.H. Hyers, G. Isac and Th.M. Rassias [9] for an
extensive account of fixed point theory with several applications.

Theorem 1.3. [6] Let (X, d) be a complete generalized metric space
and let J : X → X be a strictly contractive mapping with Lipschitz
constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X |

d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

This paper is organized as follows: In Section 2, using the fixed point
method, we prove the generalized Hyers-Ulam stability of homomor-
phisms in Banach algebras for the Jensen type functional equation.
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In Section 3, using the fixed point method, we prove the generalized
Hyers-Ulam stability of derivations on Banach algebras for the Jensen
type functional equation.

In 1996, G. Isac and Th.M. Rassias [12] were the first to provide
applications of stability theory of functional equations for the proof of
new fixed point theorems with applications.

Throughout this paper, assume that A is a real Banach algebra with
norm ∥ · ∥A and that B is a real Banach algebra with norm ∥ · ∥B.

2. Stability of homomorphisms in Banach algebras

For a given mapping f : A → B, we define

Df(x, y) := f

(
x+ y

2

)
+ f

(
x− y

2

)
− f(x)

for all x, y ∈ A.
Note that an R-linear mapping H : A → B is called a homomorphism

in Banach algebras if H satisfies H(xy) = H(x)H(y) for all x, y ∈ A.
Let X be a set. A function d : X ×X → [0,∞] is called a generalized

metric on X if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
We prove the generalized Hyers-Ulam stability of homomorphisms in

Banach algebras for the functional equation Df(x, y) = 0.

Theorem 2.1. Let f : A → B be a mapping for which there exists a
function φ : A2 → [0,∞) such that

∥Df(x, y)∥B ≤ φ(x, y),(2.1)

∥f(xy)− f(x)f(y)∥B ≤ φ(x, y)(2.2)

for all x, y ∈ A. If for each x ∈ A the mapping f(tx) is continuous in
t ∈ R and if there exists an L < 1 such that φ(x, y) ≤ 2Lφ(x

2
, y
2
) for all

x, y ∈ A, then there exists a unique homomorphism H : A → B such
that

(2.3) ∥f(x)−H(x)∥B ≤ L

1− L
φ(x, 0)

for all x ∈ A.
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Proof. Consider the set

X := {g : A → B}
and introduce the generalized metric on X:

d(g, h) = inf{C ∈ R+ : ∥g(x)− h(x)∥B ≤ Cφ(x, 0) for all x ∈ A}.
It is easy to show that (X, d) is complete.

Now we consider the linear mapping J : X → X such that

Jg(x) :=
1

2
g(2x)

for all x ∈ A.
By Theorem 3.1 of [3],

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ X.
Letting y = 0 in (2.1), we get∥∥∥2f (x

2

)
− f(x)

∥∥∥
B
≤ φ(x, 0)

for all x ∈ A. So∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥
B

≤ 1

2
φ(2x, 0) ≤ Lφ(x, 0)

for all x ∈ A. Hence d(f, Jf) ≤ L.
By Theorem 1.3, there exists a mapping H : A → B such that
(1) H is a fixed point of J , i.e.,

(2.4) H(2x) = 2H(x)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞}.
This implies that H is a unique mapping satisfying (2.4) such that there
exists C ∈ (0,∞) satisfying

∥H(x)− f(x)∥B ≤ Cφ(x, 0)

for all x ∈ A.
(2) d(Jnf,H) → 0 as n → ∞. This implies the equality

(2.5) lim
n→∞

f(2nx)

2n
= H(x)

for all x ∈ A.
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(3) d(f,H) ≤ 1
1−L

d(f, Jf), which implies the inequality

d(f,H) ≤ L

1− L
.

This implies that the inequality (2.3) holds.
One can easily show that

(2.6) lim
j→∞

1

2j
φ(2jx, 2jy) = 0

for all x, y ∈ A. It follows from (2.1), (2.5) and (2.6) that∥∥∥∥H (
x+ y

2

)
+H

(
x− y

2

)
−H(x)

∥∥∥∥
B

= lim
n→∞

1

2n
∥f(2n−1(x+ y)) + f(2n−1(x− y))− f(2nx)∥B

≤ lim
n→∞

1

2n
φ(2nx, 2ny) = 0

for all x, y ∈ A. So

H

(
x+ y

2

)
+H

(
x− y

2

)
= H(x)

for all x, y ∈ A. Letting z = x+y
2

and w = x−y
2

in the above equation, we
get

H(z) +H(w) = H(z + w)

for all z, w ∈ A. So the mapping H : A → B is Cauchy additive, i.e.,
H(z + w) = H(z) +H(w) for all z, w ∈ A.

By the same reasoning as in the proof of Theorem 1.1 [20], one can
show that the mapping H : A → B is R-linear.

It follows from (2.2) that

∥H(xy)−H(x)H(y)∥B = lim
n→∞

1

4n
∥f(4nxy)− f(2nx)f(2ny)∥B

≤ lim
n→∞

1

4n
φ(2nx, 2ny) ≤ lim

n→∞

1

2n
φ(2nx, 2ny) = 0

for all x, y ∈ A. So

H(xy) = H(x)H(y)

for all x, y ∈ A.
Thus H : A → B is a homomorphism satisfying (2.3), as desired.
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Corollary 2.2. Let r < 1 and θ be nonnegative real numbers, and
let f : A → B be a mapping such that

∥Df(x, y)∥B ≤ θ(∥x∥rA + ∥y∥rA),(2.7)

∥f(xy)− f(x)f(y)∥B ≤ θ(∥x∥rA + ∥y∥rA)(2.8)

for all x, y ∈ A. If for each x ∈ A the mapping f(tx) is continuous in
t ∈ R, then there exists a unique homomorphism H : A → B such that

∥f(x)−H(x)∥B ≤ 2rθ

2− 2r
∥x∥rA

for all x ∈ A.

Proof. The proof follows from Theorem 2.1 by taking

φ(x, y) := θ(∥x∥rA + ∥y∥rA)
for all x, y ∈ A. Then we can choose L = 2r−1 and we get the desired
result.

Theorem 2.3. Let f : A → B be a mapping for which there exists
a function φ : A2 → [0,∞) satisfying (2.1) and (2.2). If for each x ∈ A
the mapping f(tx) is continuous in t ∈ R and if there exists an L < 1
such that φ

(
x
2
, y
2

)
≤ L

4
φ(x, y) for all x, y ∈ A, then there exists a unique

homomorphism H : A → B such that

(2.9) ∥f(x)−H(x)∥B ≤ 1

1− L
φ(x, 0)

for all x ∈ A.

Proof. Consider the complete generalized metric space (X, d) given in
the proof of Theorem 2.1.

Now we consider the linear mapping J : X → X such that

Jg(x) := 2g
(x
2

)
for all x ∈ A.

By Theorem 3.1 of [3],

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ X.
Letting y = 0 in (2.1), we get∥∥∥2f (x

2

)
− f(x)

∥∥∥
B
≤ φ(x, 0)
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for all x ∈ A. So∥∥∥f(x)− 2f
(x
2

)∥∥∥
B
≤ φ(x, 0) ≤ L

2
φ(2x, 0)

for all x ∈ A. Hence d(f, Jf) ≤ 1.
By Theorem 1.3, there exists a mapping H : A → B such that
(1) H is a fixed point of J . This implies that H is a unique mapping

satisfying (2.4) such that there exists C ∈ (0,∞) satisfying

∥H(x)− f(x)∥B ≤ Cφ(x, 0)

for all x ∈ A.
(2) d(Jnf,H) → 0 as n → ∞. This implies the equality

lim
n→∞

2nf
( x

2n

)
= H(x)

for all x ∈ A.
(3) d(f,H) ≤ 1

1−L
d(f, Jf), which implies the inequality

d(f,H) ≤ 1

1− L
.

This implies that the inequality (2.9) holds.
One can easily show that

lim
j→∞

4jφ
( x

2j
,
y

2j

)
= 0

for all x, y ∈ A. By (2.1), we see that∥∥∥∥H (
x+ y

2

)
+H

(
x− y

2

)
−H(x)

∥∥∥∥
B

= lim
n→∞

2n
∥∥∥∥f (

x+ y

2n+1

)
+ f

(
x− y

2n+1

)
− f

( x

2n

)∥∥∥∥
B

≤ lim
n→∞

2nφ
( x

2n
,
y

2n

)
≤ lim

n→∞
4nφ

( x

2n
,
y

2n

)
= 0

for all x, y ∈ A.
By the proof of Theorem 2.1, the mapping H : A → B is Cauchy

additive.
By the same reasoning as in the proof of Theorem 1.1 [20], one can

show that the mapping H : A → B is R-linear.
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It follows from (2.2) that

∥H(xy)−H(x)H(y)∥B = lim
n→∞

4n
∥∥∥f (xy

4n

)
− f

( x

2n

)
f
( y

2n

)∥∥∥
B

≤ lim
n→∞

4nφ
( x

2n
,
y

2n

)
= 0

for all x, y ∈ A. So

H(xy) = H(x)H(y)

for all x, y ∈ A.
Thus H : A → B is a homomorphism satisfying (2.9), as desired.

Corollary 2.4. Let r > 2 and θ be nonnegative real numbers, and
let f : A → B be a mapping satisfying (2.7) and (2.8). If for each x ∈ A
the mapping f(tx) is continuous in t ∈ R, then there exists a unique
homomorphism H : A → B such that

∥f(x)−H(x)∥B ≤ 2rθ

2r − 4
∥x∥rA

for all x ∈ A.

Proof. The proof follows from Theorem 2.3 by taking

φ(x, y) := θ(∥x∥rA + ∥y∥rA)

for all x, y ∈ A. Then we can choose L = 22−r and we get the desired
result.

3. Stability of derivations on Banach algebras

Note that an R-linear mapping δ : A → A is called a derivation on A
if δ satisfies δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A.

We prove the generalized Hyers-Ulam stability of derivations on Ba-
nach algebras for the functional equation Df(x, y) = 0.

Theorem 3.1. Let f : A → A be a mapping for which there exists a
function φ : A2 → [0,∞) such that

∥Df(x, y)∥A ≤ φ(x, y),(3.1)

∥f(xy)− f(x)y − xf(y)∥A ≤ φ(x, y)(3.2)
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for all x, y ∈ A. If there exists an L < 1 such that φ(x, y) ≤ 2Lφ(x
2
, y
2
)

for all x, y ∈ A. If for each x ∈ A the mapping f(tx) is continuous in
t ∈ R, then there exists a unique derivation δ : A → A such that

(3.3) ∥f(x)− δ(x)∥A ≤ L

1− L
φ(x, 0)

for all x ∈ A.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists
a unique R-linear mapping δ : A → A satisfying (3.3). The mapping
δ : A → A is given by

δ(x) = lim
n→∞

f(2nx)

2n

for all x ∈ A.
It follows from (3.2) that

∥δ(xy)− δ(x)y − xδ(y)∥A

= lim
n→∞

1

4n
∥f(4nxy)− f(2nx) · 2ny − 2nxf(2ny)∥A

≤ lim
n→∞

1

4n
φ(2nx, 2ny) ≤ lim

n→∞

1

2n
φ(2nx, 2ny) = 0

for all x, y ∈ A. So
δ(xy) = δ(x)y + xδ(y)

for all x, y ∈ A. Thus δ : A → A is a derivation satisfying (3.3).

Corollary 3.2. Let r < 1 and θ be nonnegative real numbers, and
let f : A → A be a mapping such that

∥Df(x, y)∥A ≤ θ(∥x∥rA + ∥y∥rA),(3.4)

∥f(xy)− f(x)y − xf(y)∥A ≤ θ(∥x∥rA + ∥y∥rA)(3.5)

for all x, y ∈ A. If for each x ∈ A the mapping f(tx) is continuous in
t ∈ R, then there exists a unique derivation δ : A → A such that

∥f(x)− δ(x)∥A ≤ 2rθ

2− 2r
∥x∥rA

for all x ∈ A.

Proof. The proof follows from Theorem 3.1 by taking

φ(x, y) := θ(∥x∥rA + ∥y∥rA)
for all x, y ∈ A. Then we can choose L = 2r−1 and we get the desired
result.
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Theorem 3.3. Let f : A → A be a mapping for which there exists
a function φ : A2 → [0,∞) satisfying (3.1) and (3.2). If there exists an
L < 1 such that φ

(
x
2
, y
2

)
≤ L

4
φ(x, y) for all x, y ∈ A. If for each x ∈ A

the mapping f(tx) is continuous in t ∈ R, then there exists a unique
derivation δ : A → A such that

(3.6) ∥f(x)− δ(x)∥A ≤ 1

1− L
φ(x, 0)

for all x ∈ A.

Proof. By the same reasoning as the proof of Theorem 2.3, there exists
a unique R-linear mapping δ : A → A satisfying (3.6). The mapping
δ : A → A is given by

δ(x) = lim
n→∞

2nf
( x

2n

)
for all x ∈ A.

It follows from (3.2) that

∥δ(xy)− δ(x)y − xδ(y)∥A
= lim

n→∞
4n

∥∥∥f (xy
4n

)
− f

( x

2n

)
· y

2n
− x

2n
f
( y

2n

)∥∥∥
A

≤ lim
n→∞

4nφ
( x

2n
,
y

2n

)
= 0

for all x, y ∈ A. So

δ(xy) = δ(x)y + xδ(y)

for all x, y ∈ A. Thus δ : A → A is a derivation satisfying (3.6).

Corollary 3.4. Let r > 2 and θ be nonnegative real numbers, and
let f : A → A be a mapping satisfying (3.4) and (3.5). If for each x ∈ A
the mapping f(tx) is continuous in t ∈ R, then there exists a unique
derivation δ : A → A such that

∥f(x)− δ(x)∥A ≤ 2rθ

2r − 4
∥x∥rA

for all x ∈ A.

Proof. The proof follows from Theorem 3.3 by taking

φ(x, y) := θ(∥x∥rA + ∥y∥rA)
for all x, y ∈ A. Then we can choose L = 22−r and we get the desired
result.
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