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ON THE SUPERSTABILITY OF THE GENERALIZED

SINE FUNCTIONAL EQUATIONS

Mi Hyun Han and Gwang Hui Kim∗

Abstract. In this paper, we study the superstability problem bounded
by two-variables of Th. M. Rassias type for the generalized sine func-
tional equations

g(x+ y)f(x− y) = f(x)2 − f(y)2

f(x+ y)g(x− y) = f(x)2 − f(y)2

g(x+ y)g(x− y) = f(x)2 − f(y)2,

which does not use his iteration method.

1. Introduction

The stability problem of the functional equation was conjectured by
Ulam [12] during the conference in the university of Wisconsin in 1940.
In the next year, it was solved by Hyers [8] in the case of additive map-
ping, which is called the Hyers-Ulam stability.

In 1979, J. Baker et al. in [4] introduced the following: if f satisfies
the inequality |E1(f)− E2(f)| ≤ ε, then either f is bounded or E1(f) =
E2(f). This is frequently referred to as superstability.

The superstability of the cosine functional equation (C) (also called
the d’Alembert equation)

(C) f(x+ y) + f(x− y) = 2f(x)f(y)
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and the sine functional equation

f(x)f(y) = f(
x+ y

2
)2 − f(

x− y

2
)2

were investigated by Baker [3] and Cholewa [5]. Their results were
improved by Badora [1] and Badora and Ger [2], Forti [6] and Găvruta
[7] as well as by Kim([9], [10], [11]). Since the above sine functional
equation is equivalent to

(S) f(x+ y)f(x− y) = f(x)2 − f(y)2,

we will use the latter as the sine equation.
In this paper, we investigate the superstability of the generalized func-

tional equations of the sine functional equation as follows:

g(x+ y)f(x− y) = f(x)2 − f(y)2,(GFFF)

f(x+ y)g(x− y) = f(x)2 − f(y)2,(FGFF)

g(x+ y)g(x− y) = f(x)2 − f(y)2.(GGFF)

2. Stability of the Equations

In this section, we investigate the superstability of the generalized
functional equations (GFFF), (FGFF),(GGFF) of the sine functional
equations, which are not used the traditional iteration method by Th.
M. Rassias, even though they are considered in his form.

Theorem 2.1. Let A be a commutative Banach algebra and f, g :
A → C be functions satisfying the inequality

(2.1) |g(x+ y)f(x− y)− f(x)2 + f(y)2| ≤ δ(∥x∥+ ∥y∥)

for all x, y ∈ A. If g is unbounded, then f satisfies the Wilson functional
equation

(2.2) f(x+ y) + f(x− y) = 2f(x)h(y)

with the function h defined by h(x) := f(x+w)−f(x−w)
2f(w)

, where f(w) ̸= 0.

Moreover, if f is unbounded with f(0) = 0, then f satisfies the sine
functional equation

f(x+ y)f(x− y) = f(x)2 − f(y)2.
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Proof. For every x, y ∈ A, let u = x+ y, v = x− y. Then by putting
x = u+v

2
and y = u−v

2
in (2.1) we get

|g(u)f(v)− f(
u+ v

2
)2 + f(

u− v

2
)2|(2.3)

≤ δ(∥u+ v

2
∥+ ∥u− v

2
∥)

≤ δ(∥u∥+ ∥v∥).

Define the function h on A by h(x) := f(x+w)−f(x−w)
2f(w)

such that f(w) ̸= 0.

Then, we claim that f(x+ y) + f(x− y) = 2f(x)h(y). At first, we need
to show that |g(x+ y)+ g(x− y)−2g(x)h(y)| ≤ 4δ

|f(w)|(∥x∥+∥y∥+∥w∥).

Indeed, it holds from (2.3) that

|g(x+ y) + g(x− y)− 2g(x)h(y)|(2.4)

=
1

|f(w)|
|g(x+ y)f(w) + g(x− y)f(w)− 2g(x)f(w)h(y)|

≤ 1

|f(w)|
|g(x+ y)f(w)− f(

x+ y + w

2
)2 + f(

x+ y − w

2
)2|

+
1

|f(w)|
|g(x− y)f(w)− f(

x− y + w

2
)2 + f(

x− y − w

2
)2|

+
1

|f(w)|
|f(x+ y + w

2
)2 − f(

x− y − w

2
)2 − g(x)f(y + w)|

+
1

|f(w)|
|g(x)f(y − w)− f(

x+ y − w

2
)2 + f(

x− y + w

2
)2|

+|2g(x)f(y + w)− f(y − w)

2f(w)
− 2g(x)h(y)|

≤ 1

|f(w)|
δ(∥x+ y∥+ ∥w∥) + 1

|f(w)|
δ(∥x− y∥+ ∥w∥)

+
1

|f(w)|
δ(∥x∥+ ∥y + w∥) + 1

|f(w)|
δ(∥x∥+ ∥y − w∥)

≤ 4δ

|f(w)|
(∥x∥+ ∥y∥+ ∥w∥), ∀x, y ∈ A.



174 Mi Hyun Han and Gwang Hui Kim

Using (2.3) and (2.4), we have for every z ∈ A

|g(z)||f(x+ y) + f(x− y)− 2f(x)h(y)|(2.5)

= |g(z)f(x+ y) + g(z)f(x− y)− 2g(z)f(x)h(y)|

≤ |g(z)f(x+ y)− f(
z + x+ y

2
)2 + f(

z − x− y

2
)2|

+|g(z)f(x− y)− f(
z + x− y

2
)2 + f(

z − x+ y

2
)2|

+|f(z + x+ y

2
)2 − f(

z − x+ y

2
)2 − g(z + y)f(x)|

+|f(z + x− y

2
)2 − f(

z − x− y

2
)2 − g(z − y)f(x)|

+|[g(z + y) + g(z − y)]f(x)− 2g(z)f(x)h(y)|

≤ 4δ(∥x∥+ ∥y∥+ ∥z∥) + 4δ
|f(x)|
|f(w)|

(∥z∥+ ∥y∥+ ∥w∥).

Therefore, since ∥x∥ ≤ ∥w∥ or ∥x∥ > ∥w∥, the above inequality (2.5)
states

|f(x+ y) + f(x− y)− 2f(x)h(y)|(2.6)

≤ 4δ
(∥x∥+ ∥y∥+ ∥z∥)

|g(z)|
(
|f(x)|
|f(w)|

+ 1)

or

|f(x+ y) + f(x− y)− 2f(x)h(y)|(2.7)

≤ 4δ
(∥w∥+ ∥y∥+ ∥z∥)

|g(z)|
(
|f(x)|
|f(w)|

+ 1).

Since g is assumed to be an unbounded function, then we can choose
(zn) ∈ G so that |g(zn)| → ∞ as n → ∞. So the right sides of above
inequalities (2.6) and (2.7) vanish for fixed elements x, y. Hence f and
h satisfy (2.2).

Next, let f be an unbounded function with f(0) = 0 satisfying (2.1).
Applying x = 0 in (2.2), then f is odd, i.e., f(−y) = −f(y). Substituting
(x, y) = (u+v

2
, u−v

2
) in (2.2), it implies

(2.8) f(u) + f(v) = 2f(
u+ v

2
)h(

u− v

2
) ∀u, v ∈ A.
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Then, from (2.8) and f(0) = 0, we infer that

f(x+ y) = f(x+ y) + f(0)(2.9)

= 2f(
x+ y

2
)h(

x+ y

2
) ∀x, y ∈ A,

and

f(x− y) = f(x− y) + f(0)(2.10)

= 2f(
x− y

2
)h(

x− y

2
) ∀x, y ∈ A.

The oddness of f and (2.8) implies

f(x)− f(y) = f(x) + f(−y)(2.11)

= 2f(
x− y

2
)h(

x+ y

2
) ∀x, y ∈ A.

From (2.8), (2.9), (2.10), and (2.11), we obtain

f(x+ y)f(x− y) = [2f(
x+ y

2
)h(

x+ y

2
)][2f(

x− y

2
)h(

x− y

2
)]

= [2f(
x+ y

2
)h(

x− y

2
)][2f(

x− y

2
)h(

x+ y

2
)]

= [f(x) + f(y)][f(x)− f(y)]

= f(x)2 − f(y)2

for all x, y ∈ A.

Theorem 2.2. Let A be a commutative Banach algebra and f, g :
A → C be functions satisfying the inequality

|f(x+ y)g(x− y)− f(x)2 + f(y)2| ≤ δ(∥x∥+ ∥y∥)(2.12)

for all x, y ∈ A. If g is unbounded, then f satisfies the Wilson functional
equation

(2.13) f(x+ y) + f(x− y) = 2f(x)h(y)

with the function h defined by h(x) := f(w+x)+f(w−x)
2f(w)

, where f(w) ̸= 0.

Moreover, if f is unbounded with f(0) = 0, then f satisfies the sine
functional equation (S).

Proof. An obvious slight change in the steps of the proof applied in
Theorem 2.2 gives us the required result. Indeed, let g be unbounded.
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the inequality

|f(u)g(v)− f(
u+ v

2
)2 + f(

u− v

2
)2| ≤ δ(∥u∥+ ∥v∥).

Define the functional h on A by h(x) := f(w+x)+f(w−x)
2f(w)

such that

f(w) ̸= 0. Then, we claim that f(x + y) + f(x − y) = 2f(x)h(y). Due
to the similar calculation with (2.3) and (2.4) in Theorem 2.1, we show
that

|g(x+ y) + g(x− y)− 2g(x)h(y)| ≤ 4δ

|f(w)|
(∥x∥+ ∥y∥+ ∥w∥)

and also

|g(z)||f(x+ y) + f(x− y)− 2f(x)h(y)|

≤ 4δ(∥x∥+ ∥y∥+ ∥z∥) + 4δ
|f(x)|
|f(w)|

(∥z∥+ ∥y∥+ ∥w∥).

Since g is an unbounded, for (zn) ∈ G so that |g(zn)| → ∞, and x, y
are fixed elements, Hence the same reason with Theorem 2.1 give to us
that f and h satisfy (2.2).

For the remainder of the proof, running along an obvious slight change
in the step by step of that of Theorem 2.1, then we arrive the required
result.

Theorem 2.3. Let A be a commutative Banach algebra and f, g :
A → C be functions satisfying the inequality

(2.14) |g(x+ y)g(x− y)− f(x)2 + f(y)2| ≤ δ(∥x∥+ ∥y∥)
for all x, y ∈ A. Then either g is bounded or g satisfies the Wilson
functional equation g(x+ y) + g(x− y) = 2g(x)h(y) with the function h

defined by h(x) := g(w+x)+g(w−x)
2g(w)

, where g(w) ̸= 0 and the sine functional

equation

g(x+ y)g(x− y) = g(x)2 − g(y)2.

Proof. Let g be unbounded. An obvious slight change in the steps of
the proof applied in Theorem 2.1 gives us the inequality

(2.15) |g(u)g(v)− f(
u+ v

2
)2 + f(

u− v

2
)2| ≤ δ(∥u∥+ ∥v∥).

Define the functional h on A by h(x) := g(w+x)+g(w−x)
2g(w)

. Since the defined

function h and (2.8) are the same roles as h of Theorem 2.2 respectively,
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we obtain the equation g(x+ y) + g(x− y) = 2g(x)h(y). The rest of the
proof runs along the same line as in Theorem 2.2.

Corollary 2.4. Let A be a commutative Banach algebra and f :
A → C be an unbounded function satisfying the inequality

|f(x+ y)f(x− y)− f(x)2 + f(y)2| ≤ δ(∥x∥+ ∥y∥)

for all x, y ∈ A. Then f satisfies the sine functional equation (S).

Remark 2.5. In all results in this section, letting δ(∥u∥ + ∥v∥) = ε:
constant, then we obtain the same numbers of corollaries, which are
found in papers ([5], [10]).

3. Extension to Banach Algebra

All results in the Section 2 can be extended to the superstability on
the Banach space.

In this section, let A be a commutative Banach algebra, and (E, ∥ · ∥)
be a semisimple commutative Banach space.

Theorem 3.1. Assume that f, g : A → E satisfy the inequality

(3.1)
∥∥g(x+ y)f(x− y)− f(x)2 + f(y)2

∥∥ ≤ δ(∥x∥+ ∥y∥)

for all x, y ∈ A.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
if the superposition x∗ ◦ g is unbounded, then f satisfies the Wilson

functional equation

(3.2) f(x+ y) + f(x− y) = 2f(x)h(y)

with the function h defined by h(x) := f(x+w)−f(x−w)
2f(w)

, where f(w) ̸= 0.

Moreover, if the superposition x∗◦f is unbounded with (x∗◦f)(0) = 0,
then f satisfies the sine functional equation

(3.3) f(x+ y)f(x− y) = f(x)2 − f(y)2.

Proof. Assume that (3.1) holds, and fix arbitrarily a linear multiplica-
tive functional x∗ ∈ E. As it is well known, we have from (3.1) that for
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every x, y ∈ A

δ(∥x∥+ ∥y∥) ≥
∥∥g(x+ y)f(x− y)− f(x)2 + f(y)2

∥∥
= sup

∥y∗∥=1

∣∣y∗ (g(x+ y)f(x− y)− f(x)2 + f(y)2
)∣∣

≥
∣∣x∗ (g(x+ y)) · x∗ (f(x− y))− x∗(f(x))2 + x∗(f(y))2

∣∣ ,
which states that the superpositions x∗ ◦ f and x∗ ◦ g yield a solution

of stability inequality (2.1) of Theorem 2.1. By assumption, since the
superposition x∗ ◦ g is unbounded, an appeal to Theorem 2.1 shows that
the superpositions x∗ ◦ f and x∗ ◦ h solve (2.2), namely

(3.4) (x∗ ◦ f)(x+ y) + (x∗ ◦ f)(x− y) = 2(x∗ ◦ f)(x)(x∗ ◦ h)(y),

in which h is defined by h(y) := f(y+w)−f(y−w)
2f(w)

with f(w) ̸= 0.

In other words, bearing the linear multiplicativity of x∗ in mind, for
all x, y ∈ A, the difference of (3.2)

DSfh(x, y) := f(x+ y) + f(x− y)− 2f(x)h(y)

falls into the kernel of x∗. Therefore, in view of the unrestricted choice
of x∗, we infer that

DSfh(x, y) ∈
∩

{kerx∗ : x∗ is a multiplicative member of E∗}

for all x, y ∈ A. Since the algebra E has been assumed to be semisimple,
the last term of the above formula coincides with the singleton {0}, i.e.,
which states our claimed (3.2).

In particular, if the superposition x∗ ◦ f is unbounded with (x∗ ◦
f)(0) = 0, then, from Theorem 2.1, x∗ ◦ f satisfies the sine functional
equation (S), i.e.,

(3.5) (x∗ ◦ f)(x+ y)(x∗ ◦ f)(x− y) = (x∗ ◦ f)(x)2 − (x∗ ◦ f)(y)2.
In same above logic, bearing the linear multiplicativity of x∗ in mind,

for all x, y ∈ A, the difference of (3.3)

DSf (x, y) := f(x+ y)f(x− y)− f(x)2 + f(y)2

∈
∩

{kerx∗ : x∗ is a multiplicative member of E∗}

The semisimplity of E implies us the required result (3.3).

Theorem 3.2. Assume that f, g : A → E satisfy the inequality∥∥f(x+ y)g(x− y)− f(x)2 + f(y)2
∥∥ ≤ δ(∥x∥+ ∥y∥)
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for all x, y ∈ A.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
if the superposition x∗ ◦ g is unbounded, then f satisfies the Wil-

son functional equation (3.2) with the function h defined by h(x) :=
f(w+x)+f(w−x)

2f(w)
, where f(w) ̸= 0.

Moreover, if the superposition x∗◦f is unbounded with (x∗◦f)(0) = 0,
then f satisfies the sine functional equation (S).

Theorem 3.3. Assume that f, g : A → E satisfy the inequality∥∥g(x+ y)g(x− y)− f(x)2 + f(y)2
∥∥ ≤ δ(∥x∥+ ∥y∥)

for all x, y ∈ A.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
if the superposition x∗ ◦ g is unbounded, then f satisfies the Wil-

son functional equation (3.2) with the function h defined by h(x) :=
g(w+x)+g(w−x)

2g(w)
, where f(w) ̸= 0.

Moreover, if the superposition x∗◦f is unbounded with (x∗◦f)(0) = 0,
then f satisfies the sine functional equation (S).

Corollary 3.4. Assume that f : A → E satisfy the inequality∥∥f(x+ y)f(x− y)− f(x)2 + f(y)2
∥∥ ≤ δ(∥x∥+ ∥y∥)

for all x, y ∈ A.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
if the superposition x∗ ◦ f is unbounded, then f satisfies the Wil-

son functional equation (3.2) with the function h defined by h(x) :=
f(x+w)−f(x−w)

2f(w)
, where f(w) ̸= 0.

Moreover, if the superposition x∗◦f is unbounded with (x∗◦f)(0) = 0,
then f satisfies the sine functional equation (S).

Remark 3.5. As in Remark 2.5, for all results in this section, let-
ting δ(∥u∥ + ∥v∥) = ε: constant, then we obtain the same numbers of
corollaries, which are found in papers ([5], [10]).
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