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LARGE AMPLITUDE THEORY OF A

SHOCK-ACCELERATED INSTABILITY IN

COMPRESSIBLE FLUIDS

Sung-Ik Sohn

Abstract. The interface between fluids of different densities is un-
stable under acceleration by a shock wave. A previous small am-
plitude linear theory for the compressible Euler equation failed to
provide a quantitatively correct prediction for the growth rate of
the unstable interface. In this paper, to include dominant nonlinear
effects in a large amplitude regime, we present high-order perturba-
tion equations of the Euler equation, and boundary conditions for
the contact interface and shock waves.

1. Introduction

When an incident shock collides with an interface between two flu-
ids of different densities, the interface becomes hydrodynamically un-
stable, while the shock bifurcates into a transmitted shock and a re-
flected wave [1]. This interfacial instability is known as Richtmyer-
Meshkov (RM) instability) and plays an important role in many fields
ranging from astrophysics to inertial confinement fusion [2]. The RM
instability has been studied in a wide range of contexts, from theo-
ries [3, 4, 5, 6, 7, 8, 9, 10, 11] to numerical simulations [12, 13, 14, 15].

The dominant characteristics of the RM unstable interface are fingers,
known as bubble and spike, of each phase extending into the region occu-
pied by the opposite phase [2]. Thus a bubble (spike) is a portion of the
light (heavy) fluid penetrating into the heavy (light) fluid. Eventually,
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the perturbation on the interface develops to a turbulent mixing of two
fluids.

Richtmyer [1] proposed a small amplitude linear theory for the com-
pressible Euler equation for the RM instability, and predicted the con-
stant growth rate of the interface. However, results of numerical simula-
tions revealed a decaying growth of the RM interface at a late time [13,
15]. Recently, potential flow models [8, 9] showed that the RM interface
has an asymptotic growth rate of the form 1/(kt), where k is the wave
number of the interface.

Besides the potential flow models, perturbation methods have been
studied by several authors [4, 5, 10, 11], to describe the early and in-
termediate nonlinear regimes of the RM instability. This line of the
methods is called as the weakly nonlinear theory, and was first pro-
posed by Zhang and Sohn [4], extending the linear impulsive model by
Richtmyer [1]. Vandenboomgaerde and his collaborators [10, 11] further
developed the weakly nonlinear theory and found an efficient method.

Although the potential flow models and the weakly nonlinear the-
ory give good descriptions for nonlinearity of the evolution of the RM
interface, these models are based on the assumption of incompressible
fluids, and therefore neglect compressibility effects. To include both ef-
fects of compressibility and nonlinearity, a large amplitude theory for
the compressible Euler equation is called for, but the compressible Euler
equation is still limited to the linear theory, and fails to give a quanti-
tatively correct prediction for the growth rate of the unstable interface.

In this paper, we present high-order equations of the compressible
Euler equation, and boundary conditions for the contact interface and
shocks for the RM instability, extending the linearized Euler equation
by Richtmyer [1]. The second-order perturbations of the Euler equation
and boundary conditions are obtained, to include dominant nonlinear
effects in a large amplitude regime.

In Section 2, the zeroth order solution and first-order linear theory is
summarized. We present the high-order perturbation equations for the
fluids in Section3, and the high-order boundary conditions in Section 4.
Section 5 gives concluding remarks.
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2. Linear equations

In this section, we summarize the equations and boundary conditions
for the small amplitude theory of the RM instability. These equations
are derived by linearizing the compressible Euler equation [1].

The Euler equation is given by

∂v

∂t
+ ux

∂v

∂x
+ uz

∂v

∂z
= v

(
∂ux

∂x
+

∂uz

∂z

)
,(1)

∂ux

∂t
+ ux

∂ux

∂x
+ uz

∂ux

∂z
= −v

∂p

∂x
,(2)

∂uz

∂t
+ ux

∂uz

∂x
+ uz

∂uz

∂z
= −v

∂p

∂z
,(3)

with the equation of state p = f(v, s), where the fluid velocity is denoted
by u = (ux, uz), the specific volume v, and the specific entropy s.

2.1. Riemann solution for shock-contact interaction. The zeroth
order solution of the RM instability is the unperturbed problem of the
shock-contact interaction, i.e. a head-on collision of a plane shock with
a flat contact discontinuity. This shock-contact interaction produces a
transmitted shock, and a reflected wave that can be either a shock or
a rarefaction. The shock-contact interaction defines a one-dimensional
Riemann problem for compressible fluids [16].

The solution of the one-dimensional Riemann problem can be ana-
lyzed by the pressure-velocity wave diagram [3, 16]. For a given state of
the fluid ahead of a shock, there exist a family of two different solutions
for the fluid state behind the shock, i.e. the shock branch and the rar-
efaction branch. The Riemann solution can be obtained using a wave
diagram by finding the intersection of the wave curves coming out of the
behind states of the contact and the incident shock. The outcome of the
shock-contact interaction is determined by the adiabatic exponents γ0,
and γ1, the ratio of the specific volume v1/v0, and the incident shock
strength.

2.2. First-order equations. We now assume that the plane shock
wave collides with the contact interface of a sinusoidal perturbation.
The initial (pre-shocked) amplitude a0(0−) of the interface is the small
expansion parameter for the problem.

After the shock-contact interaction, the domain is separated into four
regions by the transmitted shock, the contact discontinuity, and the
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Figure 1. An illustration of the RM instability after the
shock-contact interaction. The symbols CI, TS and RS
represent the contact interface, the transmitted shock and
the reflected shock, respectively.

reflected shock (See Figure 1). We label these regions 0 to 3, from
bottom to top. Referring to Fig. 1, we take a co-moving coordinate, in
which the mean position of the contact interface is z = 0. Let w1 and
w2 be the mean speeds of the transmitted and reflected shock. Then
the positions of the transmitted shock, interface, and reflected shock is
represented by

z = −w1t+ a1(t) cos kx,(4)

z = a0(t) cos kx,(5)

z = w2t+ a2(t) cos kx,(6)

where k is the wave number of the perturbation.

In regions 0 and 3, all perturbed quantities are of zeroth order. In
the linear theory, any quantity in region 1 and 2 can be expressed as

Q(z, t) = Q0 +Q1(z, t) cos kx.(7)

Since the zeroth-order solutions for region 1 and 2 are constant states,
it is easy to show that the pressure disturbances satisfy the wave equation
in these two regions,

∂2p1

∂t2
= c2l

(
∂2p1

∂z2
− k2p1

)
,(8)
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where cl is the sound speed of the fluid, and the subscript indicates the
regions, l = 1, 2 .

In addition to Eq. (8), we need the boundary conditions at the contact
interface and shock waves. On the contact interface, the continuity of
the normal component of the fluid acceleration gives

ä0(t) = −v01
∂p1

∂z

∣∣∣∣
z=0−

= −v02
∂p1

∂z
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z=0+

.(9)

At the transmitted shock, we have

ȧ1(t) = −Cts1p
1(−w1t, t),(10)

dp1(−w1t, t)

dt
= −Cts2

∂p1

∂z
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where the coefficients are defined as
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0
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.

Here, K1 is the dimensionless slope of the Rankine-Hugoniot function
evaluated at the state 1 for a given ahead state (state 0). If we denote
the Rankine-Hugoniot function as ph(v), we have

K1 = −
(
v01
c1

)2
dph(v)

dv
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v=v01

.(12)

The boundary conditions similar to Eqs. (10) and (11) hold at the
reflected shock, and are given by

ȧ2(t) = Crs1p
1(w2t, t),(13)

dp1(w2t, t)

dt
= Crs2

∂p1

∂z
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z=w2t

+ Crs3a2(t),(14)

where the coefficients Crsj, j = 1, 2, 3, are defined by changing all the
subscripts 0 to 3, and 1 to 2 in the expressions of Ctsj.
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3. High-order equations

We derive high order perturbation equations for the RM instabil-
ity. For high-order equations, the second order harmonics are added
in the expression (7). We found that, in addition to the second order
harmonics, high-order translation terms should also be included in the
expansions, due to interactions of first and high orders. In other words,
any quantity in region 1 and 2 is expressed as

Q(z, t) = Q0 +Q1(z, t) cos kx+ Q̄2(z, t) +Q2(z, t) cos 2kx.(15)

For region 1, if p = f1(v, s) is the equation of state, then to second
order,
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Then, to second order, the equation of continuity (1) is given by
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and the momentum equations (2) and (3) are
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Differentiating (18) with respect to t, we obtain the equation for p2

and p̄,
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and
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for i = 0, 1.
It is not surprising that the second-order equation (23) has the fac-

tor 4 in the bracket, and the source term. For region 2, Eqs. (23)
and (24) similarly holds, changing c1, v

0
1, s

0
1 and f1, to c2, v

0
2, s

0
2 and f2,

respectively.

4. High-order boundary conditions

In the high-order, the positions of the transmitted shock, interface,
and reflected shock are expressed by

z = −w1t+ a1(t) cos kx+ b̄1(t) + b1(t) cos 2kx,(25)

z = a0(t) cos kx+ b̄0(t) + b0(t) cos 2kx,(26)

z = w2t+ a2(t) cos kx+ b̄2(t) + b2(t) cos 2kx.(27)

4.1. The contact interface. The continuity of the normal component
of the fluid acceleration gives
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for i = 0, 1.
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4.2. The shock waves. Expanding the jump condition at the trans-
mitted shock to second order, we have
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where R and R̄ represent the right hand sides of Eqs. (30) and (32),
respectively.

We define the dimensionless curvature of the Rankine-Hugoniot func-
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where
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Combining Eqs. (37)–(39), and using the equation of continuity and the
momentum equations, we obtain the other set of boundary conditions
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and the coefficient

Cts4 = 1

/(
w1 +
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2w1

+
w1

2K1

)
.

The boundary conditions for the reflected shock can be derived simi-
larly, and is omitted.

5. Concluding remarks

We have derived the second-order perturbation equations for the flu-
ids, and boundary conditions for the contact interface and shocks, for
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the RM instability. The resulting equations are much more complicated
than the linear equations, especially at the shocks.

It is found that the high-order translation terms appear in the per-
turbation expansions. To the author’s knowledge, the high-order trans-
lation in the RM instability was not known, and might be important in
the evaluation of the growth of the interface in the numerical simulation.
In the numerical simulation, the amplitudes of the bubble and spike are
calculated by subtracting the positions of the bubble and spike by the
Riemann solutions. The evaluation of the amplitude of the bubble and
spike in that way does not account the effect of the high-order trans-
lation of the interface, and thus might estimate the amplitude of the
interface inaccurately.

We expect that the second-order amplitude b0(t) makes the growth
of the interface diminish. To observe the behavior of the solution, we
need to integrate the equations numerically. Due to the complexity of
the equations, the numerical procedure also requires considerable works,
and is under study now.
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