ON QUASI-CLASS \mathcal{A} OPERATORS

In Hyoun Kim, B. P. Duggal and In Ho Jeon*

Abstract. Let $\mathcal{Q A}$ denote the class of bounded linear Hilbert space operators T which satisfy the operator inequality

$$
T^{*}\left|T^{2}\right| T \geq T^{*}|T|^{2} T
$$

Let f be an analytic function defined on an open neighbourhood \mathcal{U} of $\sigma(T)$ such that f is non-constant on the connected components of \mathcal{U}. We generalize a theorem of Sheth $[10]$ to $f(T) \in \mathcal{Q} \mathcal{A}$.

1. Introduction

Let $B(\mathcal{H})$ denote the algebra of bounded linear operators on a Hilbert space \mathcal{H}. Recall ([3]) that $T \in B(\mathcal{H})$ is called p-hyponormal if $\left(T^{*} T\right)^{p} \geq$ $\left(T T^{*}\right)^{p}$ for $p \in(0,1]$ and T is called paranormal if $\left\|T^{2} x\right\| \geq\|T x\|^{2}$ for all unit vector $x \in \mathcal{H}$, and we say that $T \in B(\mathcal{H})$ belongs to class \mathcal{A} if $\left|T^{2}\right| \geq$ $|T|^{2}$. We shall denote classes of p-hyponormal operators, paranormal operators, and class A operators by $\mathcal{H}(p), \mathcal{P N}$, and \mathcal{A}, respectively. It is well known that

$$
\begin{equation*}
\mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{P N} \tag{1}
\end{equation*}
$$

In [6] Jeon and Kim considered an extension of the notion of class \mathcal{A} operators; we say that $T \in B(\mathcal{H})$ is quasi-class \mathcal{A} if

$$
T^{*}\left|T^{2}\right| T \geq T^{*}|T|^{2} T
$$

Received May 9, 2011. Revised June 1, 2011. Accepted June 3, 2011.
2000 Mathematics Subject Classification: 47B20.
Key words and phrases: Quasi-class \mathcal{A} operator, Sheth's theorem.
This work of the third author was supported by the Korea Research Foundation Grant funded by the Korean Government(KRF-2008-313-C00044).

This work of the first author was supported by the University of Incheon Research Grant in 2010.
*Corresponding author.

We shall denote the set of quasi-class \mathcal{A} operators by $\mathcal{Q} \mathcal{A}$. Class $\mathcal{Q} \mathcal{A}$ properly contains class \mathcal{A}. Actually, as shown in [6, Lemma 1], an operator $T \in \mathcal{Q A}$ has a matrix representation

$$
T=\left(\begin{array}{cc}
A & B \tag{2}\\
0 & 0
\end{array}\right)\binom{\overline{T(\mathcal{H})}}{T^{*-1}(0)},
$$

where $A \in \mathcal{A}$. It is well known that

$$
\begin{equation*}
\mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{Q} \mathcal{A} . \tag{3}
\end{equation*}
$$

In view of inclusions (1) and (3), it seems reasonable to expect that the operators in class $\mathcal{Q A}$ are paranormal. But there exists an example of a class $\mathcal{Q A}$ operator which is not paranormal ([6]).

We denote the spectrum and the closure of numerical range of an operator $T \in B(\mathcal{H})$ by $\sigma(T)$ and $\overline{W(T)}$, respectively. I. H. Sheth [10] showed that if T is a hyponormal operator and $S^{-1} T S=T^{*}$ for an operator S such that $0 \notin \overline{W(S)}$, then T is self-adjoint.

In this paper we extend this result to $f(T) \in \mathcal{Q} \mathcal{A}$, where f is an analytic function defined on an open neighbourhood \mathcal{U} of $\sigma(T)$ such that f is non-constant on the connected components of \mathcal{U} : this also generalizes results proved in [8] and [7].

2. Sheth's theorem

For $T \in B(\mathcal{H})$, let $\mathcal{H}(T)$ denote the set of functions f which are analytic on an open neighbourhood \mathcal{U} of $\sigma(T)$; let $\mathcal{H}_{c}(T)$ denote those $f \in \mathcal{H}(T)$ which are non-constant on the connected components of \mathcal{U}. Generalizing a result of Sheth [10], we show in the following that if $f(T)^{*} S=S f(T)$, where $f(T) \in \mathcal{Q} \mathcal{A}$ and $0 \notin \overline{W(S)}$, then $T=T_{0} \oplus T_{1}$ for some nilpotent operator T_{0} and an operator T_{1} quasisimilar to a self-adjoint operator. We start with some complementary results.

Lemma 2.1. (i) [2, Theorem 2.1] If $T \in \mathcal{A}$, then $|T| T$ is semihyponormal and $\sigma(|T| T)=\left\{r^{2} e^{i \theta}: r e^{i \theta} \in \sigma(T)\right\}$.
(ii) [7, Lemma 3] For every $T \in B(\mathcal{H}),\left(T^{*}|T|^{2} T\right)^{\frac{1}{2}} \geq|T|^{2} \Longleftrightarrow$ $\left(\left|T^{*}\right||T|^{2}\left|T^{*}\right|\right)^{\frac{1}{2}} \geq\left|T^{*}\right|^{2}$.
(iii) [5, Theorem 1(i)] If $M, N \in B(\mathcal{H})$ are positive operators and $p, r \geq 0$, then

$$
\left(N^{\frac{r}{2}} M^{p} N^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq N^{r} \Longrightarrow\left(M^{\frac{p}{2}} N^{r} M^{\frac{p}{2}}\right)^{\frac{r}{p+r}} \leq M^{p} .
$$

We say that a pair of operators $X, Y \in B(\mathcal{H})$ are semi-similar if there exists a sequence of mutually orthogonal self-adjoint projections $\left\{P_{i}\right\}$ commuting with X and Y such that $\sum_{i} P_{i}=I$ and for each i there exists an invertible operator L_{i} on $P_{i} \mathcal{H}$ so that $L_{i}^{-1} X L_{i}=\left.Y\right|_{P_{i} \mathcal{H}}$. Observe that semi-similarity implies quasi-similarity.

Theorem 2.2. Let $T \in B(\mathcal{H})$ be such that $f(T) \in \mathcal{Q A}$. If

$$
S f(T)=f(T)^{*} S
$$

for some operator $S \in B(\mathcal{H})$ such that $0 \notin \overline{W(S)}$, then T is the direct sum of a nilpotent operator T_{0} and an operator T_{1} which is semi similar to a self-adjoint operator. In particular, if $f(z)=z^{n}$ for some odd integer $n \geq 1$, then T is the direct sum of an n-nilpotent operator and a self-adjoint operator.

Proof. Letting \mathbf{R} denote the real line, the hypothesis $S f(T)=f(T)^{*} S$ implies that $f(\sigma(T))=\sigma(f(T)) \subseteq \mathbf{R}[11$, Theorem 1]. Set $f(T)=E$; then $E \in \mathcal{Q} \mathcal{A}$, and so

$$
E=\left(\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right)\binom{\overline{E(\mathcal{H})}}{E^{*-1}(0)},
$$

where $A \in \mathcal{A}$ and $\sigma(E) \subseteq \sigma(A) \cup\{0\}\left[6\right.$, Lemma 1]. Let $S_{1}=\left.S\right|_{\overline{E(H)}}$. Then $S_{1} \in B(\overline{E(\mathcal{H})}), 0 \notin W\left(S_{1}\right)$ and $S_{1} A=A^{*} S_{1}$. Hence $\sigma(A) \subseteq \mathbf{R}$, and this (by Lemma 2.1(i)) implies that the semi-hyponormal operator $|A| A$ has real spectrum. Since a semi-hyponormal operator with real spectrum is necessarily self-adjoint, $|A| A$ is self-adjoint. Consequently, $|A||A|^{2}|A|=A^{*}|A|^{2} A=\left|A^{2}\right|^{2}$, and hence

$$
\left|A^{2}\right|=\left(|A|\left|A^{*}\right|^{2}|A|\right)^{\frac{1}{2}}=\left(A^{*}|A|^{2} A\right)^{\frac{1}{2}} .
$$

Observe that $A \in \mathcal{A}$ implies that $|A|^{2} \leq\left|A^{2}\right|=\left(A^{*}|A|^{2} A\right)^{\frac{1}{2}}$. Applying Lemma 2.1(ii), it follows that $\left(\left|A^{*}\right||A|^{2}\left|A^{*}\right|\right)^{\frac{1}{2}} \geq\left|A^{*}\right|^{2}$. Choose $p=r=2$, $M=|A|$ and and $N=\left|A^{*}\right|$ in Lemma 2.1(iii); then $\left(|A|\left|A^{*}\right|^{2}|A|\right)^{\frac{1}{2}} \leq$ $|A|^{2}$. Hence $|A|^{2}=\left|A^{2}\right|$, which implies that $A^{*}\left(A^{*} A-A A^{*}\right) A=0$, i.e., A is quasihyponormal. Since a quasihyponormal operator A with real spectrum (hence, Lebesgue area measure $m(\sigma(A))=0$) is normal [1], it follows that A is self-adjoint.

Let

$$
|E|=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{12}^{*} & A_{22}
\end{array}\right)\binom{\overline{E(\mathcal{H})}}{E^{*-1}(0)} .
$$

Then $A_{11}=|A|$ and

$$
|E|^{2}=\left(\begin{array}{cl}
|A|^{2}+\left|A_{12}^{*}\right|^{2} & * \\
* & \left|A_{12}\right|^{2}+\left|A_{22}\right|^{2}
\end{array}\right)=\left(\begin{array}{ll}
|A|^{2} & A B \\
B^{*} A & |B|^{2}
\end{array}\right),
$$

which implies that $A_{12}=0$ and $|E|=|A| \oplus|B|$ with $A B=0$. Since $E^{2}=A^{2} \oplus 0,\left|E^{2}\right|=\left|A^{2}\right| \oplus 0$ and it follows that

$$
E^{*}\left\{\left(\left|A^{2}\right| \oplus 0\right)-\left(|A|^{2} \oplus|B|^{2}\right)\right\} E=E^{*}\left\{0 \oplus-|B|^{2}\right\} E \geq 0 .
$$

Hence $B=0$, which implies that $E=f(T)$ is self-adjoint. Applying [4, Theorem 3.1] to the equation $f(T)=E, E$ self-adjoint, it follows that T is the direct sum of a nilpotent operator T_{0} and an operator T_{1} semi-similar to a self-adjoint operator.

Now let $f(z)=z^{2 m+1}$ for some non-negative integer m. Then

$$
T=T_{0} \oplus T_{1}=T_{0} \oplus H \oplus\left(\begin{array}{ll}
B & C \\
0 & -B
\end{array}\right),
$$

where T_{0} is (now) $2 m+1$-nilpotent, H is self-adjoint and B, C are commuting one-one positive operators [9, Theorem 3]. Evidently,

$$
F=\left(\begin{array}{ll}
B & C \\
0 & -B
\end{array}\right) \in \mathcal{Q} \mathcal{A} .
$$

Hence

$$
\begin{aligned}
& F^{*}\left\{\left|F^{2}\right|-|F|^{2}\right\} F \\
= & F^{*}\left[\left(\begin{array}{cc}
B^{4 m+2} & 0 \\
0 & B^{4 m+2}
\end{array}\right)-\left(\begin{array}{cc}
B^{4 m+2} & C B^{4 m+1} \\
C B^{4 m+1} & B^{4 m+2}+C^{2} B^{4 m}
\end{array}\right)\right] F \\
= & F^{*}\left[\left(\begin{array}{cc}
0 & -C B^{4 m+1} \\
-C B^{4 m+1} & -C^{2} B^{4 m}
\end{array}\right)\right] F \\
= & \left(\begin{array}{cc}
0 & C B^{8 m+3} \\
C B^{8 m+3} & C^{2} B^{8 m+2}
\end{array}\right) \geq 0 .
\end{aligned}
$$

This, however, is impossible. Hence the part F is absent, i.e., $T=$ $T_{0} \oplus H$.

References

[1] S. L. Campbell and B. C. Gupta, On k-quasihyponormal operators, Math. Japon. 23(1978-79), 185-189.
[2] M. Cho and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integral Equations Operator Theory, 53(2005), 497-508.
[3] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London (2001).
[4] F. Gilfeather, Operator valued roots of abelian analytic functions, Pacific J. Math. 55(1974), 127-148.
[5] M. Ito and T. Yamazaki, Relations between two inequalities $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$ and $A^{p} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{r}{p+r}}$ and their applications, Integral Equations Operator Theory, 44(2002), 442-450.
[6] I. H. Jeon and I. H. Kim, On operators satisfying $T^{*}\left|T^{2}\right| T \geq T^{*}|T|^{2} T$, Linear Algebra Appl. 418(2006), 854-862.
[7] I. H. Jeon, I. H. Kim, K. Tanahashi and A. Uchiyama, Conditions implying self-adjointness of operators, Integral Equations Operator Theory, 61(2008), 549-557.
[8] I. H. Kim, The Fuglede-Putnam theorem for (p, k)-quasihyponormal operators, J. Inequal. Appl. (2006), 397-403.
[9] H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. Appl. 34(1971), 653-664.
[10] I. H. Sheth, On hyponormal operators, Proc. Amer. Math. Soc., 17(1966), 9981000.
[11] J. P. Williams, Operators similar to their adjoints, Proc. Amer. Math. Soc. 20(1969), 121-123.

Department of Mathematics
University of Incheon
Incheon 406-840 Korea
E-mail: ihkim@inchon.ac.kr
8 Redwood Grove
Northfield Avenue
London W5 4SZ U.K.
E-mail: bpduggal@yahoo.co.uk
Department of Mathematics Education
Seoul National University of Education
Seoul 137-742 Korea
E-mail: jihmath@snue.ac.kr

