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THE EQUIVALENT CONDITIONS FOR THE

HOMOMORPHISM OF MINIMAL SETS TO BE

REGULAR

H. S. Song

Abstract. In this paper we study some properties on regular ho-
momorphisms. In particular, we investigate the equivalent condi-
tions for the homomorphism of minimal sets to be regular

1. Introduction

Regular minimal sets were first studied by Auslander in [1]. These
minimal sets may be described as minimal subsets of enveloping semi-
groups. In [5], Shoenfeld introduced the regular homomorphisms which
are defined by extending regular minimal sets to homomorphisms with
minimal range and obtained several characterizations on regular homo-
morphisms.

The purpose of this paper is to study some properties on regular
homomorphisms and investigate the equivalent conditions for the homo-
morphism of minimal sets to be regular.

2. Preliminaries

A transformation group, or flow, (X,T ), will consist of a jointly con-
tinuous action of the topological group T on the compact Hausdorff space
X. The group T , with identity e, is assumed to be topologically discrete
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and remain fixed throughout this paper, so we may write X instead of
(X,T ).

A homomorphism of flows is a continuous, equivariant map. A homo-
morphism from X into itself is called an endomorphism of X. Especially,
a one-one homomorphism of X onto X is called an automorphism of X.
We denote the group of automorphisms of X by A(X).

A flow is said to be minimal if every point has dense orbit. Minimal
flows are also referred to as minimal sets. M is said to be a universal
minimal set if it is a minimal set such that every minimal set is a ho-
momorphic image of M . A homomorphism whose range is minimal is
always onto.

The compact Hausdorff space X carries a natural uniformity whose
indices are the neighborhoods of the diagonal in X × X. Two points
x, x′ ∈ X are said to be proximal if, given any index α, there exists t ∈ T
such that (xt, x′t) ∈ α. The proximal relation in X, denoted by P (X,T ),
is the set of all proximal pairs inX. X is said to be distal if P (X,T ) = △,
the diagonal of X ×X and is said to be proximal if P (X,T ) = X ×X.
Given x ∈ X, we define P (x) = {x′ ∈ X | (x, x′) ∈ P (X,T )}.

A homomorphism π : X → Y is said to be proximal if whenever
x, x′ ∈ π−1(y) then x and x′ are proximal.

Given a flow (X,T ), we may regard T as a set of self-homeomorphisms
of X. We define E(X), the enveloping semigroup of X to be the closure
of T in XX , taken with the product topology. E(X) is at once a flow and
a sub-semigroup of XX . The minimal right ideals of E(X), considered
as a semigroup, coincide with the minimal sets of E(X).

If E is some enveloping semigroup, and there exists a homomorphism
θ : E → E(X) we say that E is an enveloping semigroup for X. If such
a homomorphism exists, it must be unique, and, given x ∈ X and p ∈ E
we may write xp to mean xθ(p) unambiguously.

Given a minimal right ideal I in some enveloping semigroup, we de-
note the set of idempotent elements in I by J(I).

Lemma 2.1. ([5]) Given x ∈ X and minimal subset N of xT , there
exists a minimal right ideal I such that N = xI.

Lemma 2.2. ([3]) Let π : (X,T ) → (Y, T ) be an epimorphism(or onto
homomorphism). Then there exists a unique epimorphism ψ : E(X) →
E(Y ) such that π(x)ψ(p) = π(xp) for all p ∈ E(X).
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Definition 2.3. ([1]) A minimal set X which satisfies any one (and
therefore all) of the following properties is called regular.

(a) For any two points x, x′ ∈ X there exists an endomorphism h :
X → X such that h(x) and x′ are proximal.

(b) For any two points x, x′ ∈ X with (x, x′) almost periodic there
exists an endomorphism h : X → X such that h(x) = x′.

(c) (X,T ) and (I, T ) are isomorphic, where I is a minimal right ideal
in E(X).

Remark 2.4. Since X is distal iff E(X) is minimal, Definition 2.3
shows that if X is distal and regular, (X,T ) and (E(X), T ) are isomor-
phic(see [3, Proposition 5.3]).

3. The equivalent conditions for the homomorphism to be
regular

Let π : X → Y be a fixed homomorphism with Y minimal and
suppose y ∈ Y . Then Xπ−1(y) is a flow whose elements are functions
from π−1(y) to X.

Definition 3.1. ([5]) Define zy ∈ Xπ−1(y) by zy(x) = x for all x ∈
π−1(y). Let E(π, y) be the orbit closure of zy, i.e., E(π, y) = zyT ⊂
Xπ−1(y).

Remark 3.2. (1) If Y is a singleton {y}, then E(π, y) = E(X).
(2) For each y ∈ Y , E(X) is an enveloping semigroup for E(π, y).

Definition 3.3. ([5]) Let πy : E(π, y) → Y be the unique homomor-
phism with πy(zy) = y.

Theorem 3.4. ([5]) SupposeN andN ′ are minimal subsets of E(π, y)
and E(π, y′) respectively. Then there exists an isomorphism ψ : N → N ′

such that (πy′|N ′)◦ψ = πy|N .
Remark 3.5. Theorem 3.4 shows that the minimal sets of E(π, y)

are isomorphic and independent of the choice of y and hence it defines
a minimal set N and an essentially (up to isomorphism) unique homo-
morphism which we call π : N → Y .

Definition 3.6. ([5]) Given a homomorphism π : X → Y with Y
minimal, we call the homomorphism π : N → Y the regularizer of π and
we say that π is a regular homomorphism.
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Thus a homomorphism is regular if and only if it is isomorphic to the
regularizer of some homomorphism.

Given a homomorphism ψ : Z → W , we define Autψ = {θ ∈ A(Z) |
ψ◦θ = ψ}. We say that ψ is a group extension if whenever z, z′ ∈ Z and
ψ(z) = ψ(z′), there exists θ ∈Autψ such that θ(z) = z′.

Now let M be a fixed universal minimal set and let G = A(M).
Given a homomorphism γ : M → X we define the subgroups G(X, γ)
and S(X, γ) of G as follows(see [2], [7]);

G(X, γ) = Autγ
S(X, γ) = {α ∈ G | h◦γ◦α = γ for some h ∈ A(X)}.

Remark 3.7. (1) G(X, γ) is a normal subgroup of S(X, γ).
(2) Suppose we have homomorphisms of minimal sets γ :M → X and

π : X → Y . Then G(X, γ) ⊂ G(Y, π◦γ).

Definition 3.8. ([5]) We say that a homomorphism ψ : Z → Y , Z
and Y minimal, is regular with respect to π : X → Y if, given any pair
of homomorphisms γ :M → X and δ :M −→ Z with π◦γ = ψ◦δ, there
exists a homomorphism θ : Z → X with θ◦δ = γ and π◦θ = ψ.

Theorem 3.9. ([5]) π is regular with respect to π.

Theorem 3.10. ([7]) Suppose we have homomorphisms of minimal
sets γ : M → X and π : X → Y . Then the following conditions are
equivalent :

(1) π is regular with respect to itself.
(2) G(Y, π◦γ) ⊂ S(X, γ).

Theorem 3.11. Suppose we have homomorphisms of minimal sets γ :
M → X and π : X → Y . Then the following conditions are equivalent :

(1) π is regular.
(2) π is regular with respect to itself.
(3) π is its own regularizer.
(4) For any two points x, x′ ∈ X with π(x) = π(x′) there exists an

endomorphism θ : X → X such that θ(x) and x′ are proximal and
π◦θ = π.

(5) For any two points x, x′ ∈ X with (x, x′) almost periodic and
π(x) = π(x′) there exists an endomorphism θ : X → X such
that θ(x) = x′ and π◦θ = π.

(6) G(Y, π◦γ) ⊂ S(X, γ).
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(7) Suppose y ∈ Y . Then the fiber π−1(y) of π is partitioned by the
collection of sets {π−1(y)u | u ∈ J(M) and yu = y} and π |π−1(y)u

is a group extension.

Proof. That (1), (2), (3), (4), and (5) are equivalent follows from [5,
Proposition 2.2.8]. That (2) and (6) are equivalent by Theorem 3.10.
Finally we show that (5) and (7) are equivalent.

That {π−1(y)u | u ∈ J(M) and yu = y} partitions π−1(y) follows
from [5, Corollary 2.2.9 ]. Let x, x′ ∈ π−1(y)u. Then there exist x1, x2 ∈
π−1(y) with x = x1u and x′ = x2u. This implies that (x, x′)u = (x, x′)
so (x, x′) is almost periodic. Applying (5) then yields the required group
extension.

Now let x, x′ ∈ X with (x, x′) almost periodic and π(x) = π(x′) = y.
Since (x, x′) is almost periodic, it follows that there exists u ∈ J such
that (x, x′)u = (x, x′). Hence x, x′ ∈ π−1(y)u. By hypothesis there exists
θ ∈Autπ such that θ(x) = x′.

Remark 3.12. (1) If X is regular, the homomorphism of minimal
sets π : X → Y is regular.

(2) We may use Theorem 3.11 (5) and the following statement inter-
changeably by [5, Lemma 2.2.2 ].

For any two points x, x′ ∈ X with (x, x′) almost periodic and
π(x) = π(x′) there exists θ ∈Autπ such that θ(x) = x′.

(3) Theorem 3.11 shows that a proximal homomorphism of minimal
sets is always regular.

(4) If X is proximal and minimal, it is regular.
(5) If π is regular, then G(X, γ) is a normal subgroup of G(Y, π ◦ γ)

(see [5, Proposition 2.3.3 ]).

Theorem 3.13. Suppose we have homomorphisms of minimal sets γ :
M → X and π : X → Y . Then the following conditions are equivalent :

(1) π is proximal.
(2) Given a homomorphism δ :M → X with πδ = πγ, we have δ = γ.
(3) G(X, γ) = G(Y, π◦γ).
(4) For any two points x, x′ ∈ X with (x, x′) almost periodic and

π(x) = π(x′), we have x = x′.
(5) Suppose that y ∈ Y and that u ∈ J(I) with yu = y. Then π−1(y)u

is a singleton.
(6) Suppose y ∈ Y . Then π−1(y) ⊂ xJ(M) for any x ∈ π−1(y).
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Proof. That (1) and (5) are equivalent follows from [5, Lemma 2.5.8].
That (1) and (6) are equivalent follows from immediately from [4, Propo-
sition 4.1] and the fact that if x, x′ ∈ π−1(y), then there exists u ∈ J
such that x′ = xu.

(1) implies (4). This follows from the fact that if a pair of points is
both proximal and almost periodic, the two points are identical.

(4) implies (1). Suppose x, x′ ∈ X and π(x) = π(x′). Since X is
minimal, there exists v ∈ J with xv = x. Let x′′ = x′v. Then x′′

and x′ are proximal and (x, x′′)v = (x, x′′) implies that (x, x′′) is almost
periodic. But π(x) = π(x′′). Thus x′′ = x and therefore x = x′v which
implies that x and x′ are proximal. This proves that π is proximal.

(2) implies (3). Let θ ∈ G(X, γ). Then γ◦θ = γ whence (π◦γ)◦θ =
π◦γ. This implies that θ ∈ G(Y, π◦γ). Now let θ ∈ G(Y, π◦γ). Then
π◦(γ◦θ) = (π◦γ)◦θ = π◦γ and therefore γ◦θ = γ which proves that
θ ∈ G(X, γ).

(3) implies (4). Suppose x, x′ ∈ X with (x, x′) almost periodic and
π(x) = π(x′). Then there exists an almost periodic point (p, p′) ∈M×M
such that γ×γ(p, p′) = (x, x′). SinceM is regular, we have from Remark
3.12 (2) that there exists θ ∈ A(M) with θ(p) = p′. Hence π◦γ◦θ(p) =
π◦γ(p′) = π(x′) = π(x) = π◦γ(p). Since M is minimal, it follows
that π◦γ◦θ = π◦γ. This implies that θ ∈ G(Y, π◦γ) = G(X, γ). Thus
x = γ(p) = γθ(p) = γ(p′) = x′.

(4) implies (2). Given homomorphisms γ : M → X and δ : M → X
with πδ = πγ we pick u ∈ J(M), and let γ(u) = x′ and δ(u) = x. Then
(x′, x)u = (x′, x) so (x′, x) is almost periodic. Now π(x′) = πγ(u) =
πδ(u) = π(x). Thus we get x′ = x, so that γ(u) = δ(u). Since M is
minimal, it follows that γ = δ.

Theorem 3.14. Suppose we have homomorphisms of minimal sets
γ : M → X and π : X → Y . Suppose u ∈ J(M), x0 ∈ X with
γ(u) = x0 and y ∈ Y , p ∈ M with π◦γ(p) = y. If x0θ(p) ∈ x0J(M) for
all θ ∈ G(X, γ), then P (π(x0)) = Y .

Proof. Suppose that y ∈ Y and that p ∈ M with π◦γ(p) = y. Then
by hypothesis there exists v ∈ J(M) such that x0θ(p) = x0v for all
θ ∈ G(X, γ). Since γ◦θ = γ, it follows that π(x0)v = π(γ(u)θ(p)) =
π◦γ(θ(p)) = π◦γ◦θ(p) = π◦γ(p) = y. This means that π(x0) and y are
proximal.

The proof of the following result are similar to that of Theorem 3.14.
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Theorem 3.15. Suppose we have homomorphisms of minimal sets
γ : M → X and π : X → Y . Suppose u ∈ J(M), x0 ∈ X with
γ(u) = x0 and x ∈ X, p ∈M with γ(p) = x. If x0θ(p) ∈ x0J(M) for all
θ ∈ G(X, γ), then P (x0) = X.

Theorem 3.16. Suppose that π : X → Y is a homomorphism of
minimal sets and that X is distal. Then the following statements are
equivalent :

(1) π is regular.
(2) π is a group extension.

Proof. Suppose x, x′ ∈ X and π(x) = π(x′). Since X is distal, it
follows from [3, Proposition 5.8] that X ×X is distal whence X ×X is
pointwise almost periodic. Since (x, x′) almost periodic and π is regular,
there exists θ ∈Autπ such that θ(x) = x′.

The converse is clear.
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