ON THE ES CURVATURE TENSOR IN $g-E S X_{n}$

In Ho Hwang

Abstract

This paper is a direct continuation of [1]. In this paper we investigate some properties of ES-curvature tensor of $g-E S X_{n}$, with main emphasis on the derivation of several useful generalized identities involving it. In this subsequent paper, we are concerned with contracted curvature tensors of $g-E S X_{n}$ and several generalized identities involving them. In particular, we prove the first variation of the generalized Bianchi's identity in $g-E S X_{n}$, which has a great deal of useful physical applications.

1. Preliminaries

This paper is a direct continuation of our previous paper [1], which will be denoted by I in the present paper. All considerations in this paper are based on our results and symbolism of $\mathrm{I}([2],[3],[5],[6],[8],[9])$. Whenever necessary, these results will be quoted in the text. In this section, we introduce a brief collection of basic concepts, notations, and results of I, which are frequently used in the present paper.
(a) generalized n-dimensional Riemannian manifold X_{n}.

Let X_{n} be a generalized n-dimensional Riemannian manifold referred to a real coordinate system x^{ν}, which obeys the coordinate transformations $x^{\nu} \rightarrow x^{\nu^{\prime}}$ for which

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial x^{\prime}}{\partial x}\right) \neq 0 \tag{1.1}
\end{equation*}
$$

In $n-g-U F T$ the manifold X_{n} is endowed with a real nonsymmetric tensor $g_{\lambda \mu}$, which may be decomposed into its symmetric

Received February 10, 2011. Revised March 5, 2011. Accepted March 10, 2011. 2000 Mathematics Subject Classification: 83E50, 83C05, 58A05.
Key words and phrases: ES-manifold, ES-curvature tensor.
This research was supported by University of Incheon Research Grant, 2009-2010.
part $h_{\lambda \mu}$ and skew-symmetric part $k_{\lambda \mu}$:

$$
g_{\lambda \mu}=h_{\lambda \mu}+k_{\lambda \mu} .
$$

where

$$
\mathfrak{g}=\operatorname{det}\left(g_{\lambda \mu}\right) \neq 0, \quad \mathfrak{h}=\operatorname{det}\left(h_{\lambda \mu}\right) \neq 0, \quad \mathfrak{k}=\operatorname{det}\left(k_{\lambda \mu}\right)
$$

In virtue of (1.3) we may define a unique tensor $h^{\lambda \nu}$ by

$$
h_{\lambda \mu} h^{\lambda \nu}=\delta_{\mu}^{\nu} .
$$

which together with $h_{\lambda \mu}$ will serve for raising and/or lowering indices of tensors in X_{n} in the usual manner. There exists a unique tensor $* g^{\lambda \nu}$ satisfying

$$
\begin{equation*}
g_{\lambda \mu}{ }^{*} g^{\lambda \nu}=g_{\mu \lambda}{ }^{*} g^{\nu \lambda}=\delta_{\mu}^{\nu} . \tag{1.5}
\end{equation*}
$$

It may be also decomposed into its symmetric part * $h_{\lambda \mu}$ and skewsymmetric part ${ }^{*} k_{\lambda \mu}$:

$$
{ }^{*} g^{\lambda \nu}={ }^{*} h^{\lambda \nu}+{ }^{*} k^{\lambda \nu} .
$$

The manifold X_{n} is connected by a general real connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ with the following transformation rule:

$$
\begin{equation*}
\Gamma_{\lambda^{\nu^{\prime}}}{ }_{\mu^{\prime}}=\frac{\partial x^{\nu^{\prime}}}{\partial x^{\alpha}}\left(\frac{\partial x^{\beta}}{\partial x^{\lambda^{\prime}}} \frac{\partial x^{\gamma}}{\partial x^{\mu^{\prime}}} \Gamma_{\beta}{ }^{\alpha}{ }_{\gamma}+\frac{\partial^{2} x^{\alpha}}{\partial x^{\lambda^{\prime}} \partial x^{\mu^{\prime}}}\right) . \tag{1.7}
\end{equation*}
$$

It may also be decomposed into its symmetric part $\Lambda_{\lambda}{ }^{\nu}{ }_{\mu}$ and its skew-symmetric part $S_{\lambda \nu}{ }^{\nu}$, called the torsion of $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$:

$$
\begin{equation*}
\left.\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}=\Lambda_{\lambda}{ }^{\nu}{ }_{\mu}+S_{\lambda \mu}{ }^{\nu} ; \quad \Lambda_{\lambda}{ }^{\nu}{ }_{\mu}=\Gamma_{(\lambda}{ }^{\nu}{ }_{\mu}\right) ; \quad S_{\lambda \mu}{ }^{\nu}=\Gamma_{[\lambda}{ }^{\nu}{ }_{\mu]} . \tag{1.8}
\end{equation*}
$$

A connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ is said to be Einstein if it satisfies the following system of Einstein's equations:

$$
\begin{equation*}
\partial_{\omega} g_{\lambda \mu}-\Gamma_{\lambda}{ }^{\alpha}{ }_{\omega} g_{\alpha \mu}-\Gamma_{\omega}{ }^{\alpha}{ }_{\mu} g_{\lambda \alpha}=0 . \tag{1.9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
D_{\omega} g_{\lambda \mu}=2 S_{\omega \mu}{ }^{\alpha} g_{\lambda \alpha} . \tag{1.10}
\end{equation*}
$$

where D_{ω} is the symbolic vector of the covariant derivative with respect to $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$. In order to obtain $g_{\lambda \mu}$ involved in the solution for $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ in (1.9), certain conditions are imposed. These conditions may be condensed to

$$
\begin{equation*}
S_{\lambda}=S_{\lambda \alpha}{ }^{\alpha}=0, \quad R_{[\mu \lambda]}=\partial_{[\mu} Y_{\lambda]}, \quad R_{(\mu \lambda)}=0 . \tag{1.11}
\end{equation*}
$$

where Y_{λ} is an arbitrary vector, and $\left.R_{\omega \mu \lambda}{ }^{\nu}=2\left(\partial_{[\mu} \Gamma_{|\lambda|}{ }^{\nu} \omega\right]+\Gamma_{\alpha}{ }^{\nu}{ }_{[\mu} \Gamma_{|\lambda|}{ }^{\alpha}{ }_{\omega]}\right), \quad R_{\mu \lambda}=R_{\alpha \mu \lambda}{ }^{\alpha}$.

If the system (1.10) admits a solution $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$, it must be of the form (Hlavatý, 1957)

$$
\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}=\left\{\begin{array}{l}
\nu \tag{1.13}\\
\lambda \mu
\end{array}\right\}+S_{\lambda \mu}{ }^{\nu}+U^{\nu}{ }_{\lambda \mu}
$$

where $U^{\nu}{ }_{\lambda \mu}=2 h^{\nu \alpha} S_{\alpha(\lambda}{ }^{\beta} k_{\mu) \beta}$ and $\left\{\begin{array}{l}\nu \\ \lambda \mu\end{array}\right\}$ are Christoffel symbols defined by $h_{\lambda \mu}$.
(b) Some notations and results

The following quantities are frequently used in our further considerations:

$$
\begin{equation*}
g=\frac{\mathfrak{g}}{\mathfrak{h}}, \quad k=\frac{\mathfrak{k}}{\mathfrak{h}} \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
K_{p}=k_{\left[\alpha_{1}\right.}{ }^{\alpha_{1}}{k_{\alpha_{2}}}^{\alpha_{2}} \cdots k_{\left.\alpha_{p}\right]}{ }^{\alpha^{p}}, \quad(p=0,1,2, \cdots) . \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
{ }^{(0)} k_{\lambda}{ }^{\nu}=\delta_{\lambda}^{\nu},{ }^{(p)} k_{\lambda}{ }^{\nu}=k_{\lambda}^{\alpha{ }^{(p-1)} k_{\alpha}{ }^{\nu} \quad(p=1,2, \cdots) . ~ . ~} \tag{1.16}
\end{equation*}
$$

In X_{n} it was proved in [4] that
$K_{0}=1, K_{n}=k$ if n is even, and $\mathrm{K}_{\mathrm{p}}=0$ if p is odd.
or

$$
g=1+K_{1}+K_{2}+\cdots+K_{n} .
$$

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{h}\left(1+K_{1}+K_{2}+\cdots+K_{n}\right) \tag{1.17}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{s=0}^{n-\sigma} K_{s}{ }^{(n-s+p)} k_{\lambda}^{\nu}=0 \quad(p=0,1,2, \cdots) . \tag{1.19}
\end{equation*}
$$

We also use the following useful abbreviations for an arbitrary vector Y, for $p=1,2,3, \cdots$:

$$
\begin{align*}
{ }^{(p)} Y_{\lambda} & ={ }^{(p-1)} k_{\lambda}{ }^{\alpha} Y_{\alpha} . \tag{1.20}\\
{ }^{(p)} Y^{\nu} & ={ }^{(p-1)} k^{\nu}{ }_{\alpha} Y^{\alpha} . \tag{1.21}
\end{align*}
$$

(c) n-dimensional $E S$ manifold $E S X_{n}$ In this subsection, we display an useful representation of the $E S$-connection in n - g-UFT.

Definition 1.1. A connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ is said to be semi-symmetric if its torsion tensor $S_{\lambda \mu}{ }^{\nu}$ is of the form

$$
\begin{equation*}
S_{\lambda \mu}{ }^{\nu}=2 \delta_{[\lambda}^{\nu} X_{\mu]} \tag{1.22}
\end{equation*}
$$

for an arbitrary non-null vector X_{μ}.
A connection which is both semi-symmetric and Einstein is called a $E S$-connection. An n-dimensional generalized Riemannian manifold X_{n}, on which the differential geometric structure is imposed by $g_{\lambda \mu}$ by means of a $E S$-connection, is called an n dimensional $E S$-manifold. We denote this manifold by $g-E S X_{n}$ in our further considerations.

Theorem 1.2. Under the condition (1.22), the system of equations (1.10) is equivalent to

$$
\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}=\left\{\begin{array}{c}
\nu \tag{1.23}\\
\lambda \mu
\end{array}\right\}+2 k_{(\lambda}^{\nu} X_{\mu)}+2 \delta_{[\lambda}^{\nu} X_{\mu]} .
$$

Proof. Substituting (1.22) for $S_{\lambda \mu}{ }^{\nu}$ into (1.13), we have the representation (1.23).

2. The ES curvature tensor in $g-E S X_{n}$

The n-dimensional ES curvature tensor $R_{\omega \mu \lambda}{ }^{\nu}$ of $g-E S X_{n}$ is the curvature tensor defined by the ES-connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ under the present conditions. A lengthy, but precise and surveyable tensorial representation of $R_{\omega \mu \lambda}{ }^{\nu}$ in terms of $g_{\lambda \mu}$ and their first two derivatives may be obtained by simply substituting (1.13) for $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ into (1.12). In this section, we present more concise and useful tensorial representation of $R_{\omega \mu \lambda}{ }^{\nu}$ in terms of $g_{\lambda \mu}$ and the ES vector X_{λ}, and prove three identities involving it.

Theorem 2.1. Under the present conditions, the ES curvature tensor $R_{\omega \mu \lambda}{ }^{\nu}$ of $g-E S X_{n}$ may be given by

$$
\begin{equation*}
R_{\omega \mu \lambda}{ }^{\nu}=L_{\omega \mu \lambda}{ }^{\nu}+M_{\omega \mu \lambda}{ }^{\nu}+N_{\omega \mu \lambda}{ }^{\nu} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{gather*}
L_{\omega \mu \lambda}{ }^{\nu}=2\left(\partial_{[\mu}\left\{\begin{array}{c}
\nu \\
\omega] \lambda
\end{array}\right\}+\left\{\begin{array}{c}
\nu \\
\alpha[\mu
\end{array}\right\}\left\{\begin{array}{c}
\alpha \\
\omega] \lambda
\end{array}\right\}\right) \tag{2.2}\\
M_{\omega \mu \lambda}{ }^{\nu}=2\left(\delta_{\lambda}^{\nu} \partial_{[\mu} X_{\omega]}+\delta_{[\mu}^{\nu} \nabla_{\omega]} X_{\lambda}+\nabla_{[\mu} U^{\nu}{ }_{\omega] \lambda}\right)
\end{gather*}
$$

$$
\begin{equation*}
N_{\omega \mu \lambda}{ }^{\nu}=2\left(\delta_{[\omega}^{\nu} X_{\mu]} X_{\lambda}+{ }^{(2)} X_{\lambda} k_{[\mu}{ }^{\nu} X_{\omega]}\right) . \tag{2.4}
\end{equation*}
$$

Proof. Substitute (1.13) into (1.12) and make use of (2.2) to obtain

$$
\begin{aligned}
R_{\omega \mu \lambda}{ }^{\nu} & =2 \partial_{[\mu}\left(\left\{\begin{array}{c}
\nu \\
\omega] \lambda
\end{array}\right\}+X_{\omega]} \delta_{\lambda}^{\nu}-\delta_{\omega]}^{\nu} X_{\lambda}+U^{\nu}{ }_{\omega] \lambda}\right) \\
& +2\left(\left\{\begin{array}{c}
\nu \\
\alpha[\mu
\end{array}\right\}+\delta_{\alpha}^{\nu} X_{[\mu}-X_{\alpha} \delta_{[\mu}^{\nu}+U^{\nu}{ }_{\alpha[\mu}\right) \\
& \times\left(\left\{\begin{array}{c}
\alpha \\
\omega] \lambda
\end{array}\right\}+X_{\omega]} \delta_{\lambda}^{\alpha}-\delta_{\omega]}^{\alpha} X_{\lambda}+U^{\alpha}{ }_{\omega] \lambda}\right) \\
5) & =L_{\omega \mu \lambda}{ }^{\nu}+2 \delta_{\lambda}^{\nu} \partial_{[\mu} X_{\omega]}+2\left(\delta_{[\mu}^{\nu} \partial_{\omega]} X_{\lambda}-\delta_{[\mu}^{\nu}\left\{\begin{array}{c}
\alpha \\
\omega] \lambda
\end{array}\right\} X_{\alpha}\right) \\
& +2\left(\partial_{[\mu} U^{\nu}{ }_{\omega] \lambda}+\left\{\begin{array}{c}
\alpha \\
\lambda[\omega
\end{array}\right\} U^{\nu}{ }_{\mu] \alpha}+\left\{\begin{array}{c}
\nu \\
\alpha[\mu
\end{array}\right\} U^{\alpha}{ }_{\omega] \lambda}\right) \\
& +2\left(\delta_{[\omega}^{\nu} X_{\mu]} X_{\lambda}-X_{\alpha} \delta_{[\mu}^{\nu} U^{\alpha}{ }_{\omega] \lambda}+U^{\nu}{ }_{\alpha[\mu} U^{\alpha}{ }_{\omega] \lambda}\right) .
\end{aligned}
$$

In virtue of (1.22), the sum of the second, third and fourth terms on the right-hand side of (2.5) is $M_{\omega \mu \lambda}{ }^{\nu}$. On the other hand, using (1.22), the first relation of (3.4), and (3.10) in I, we have

$$
\begin{gather*}
U^{\nu}{ }_{\lambda \mu}=2 k_{(\lambda}{ }^{\nu} X_{\mu)} \tag{2.6}\\
-X_{\alpha} \delta_{[\mu}^{\nu} U^{\alpha}{ }_{\omega] \lambda}=0 \tag{2.7}\\
U^{\nu}{ }_{\alpha[\mu} U^{\alpha}{ }_{\omega] \lambda}={ }^{(2)} X_{\lambda} k_{[\mu}{ }^{\nu} X_{\omega]} . \tag{2.8}
\end{gather*}
$$

Substituting (2.7) and (2.8) into the fifth term of (2.5), we find that it is equal to $N_{\omega \mu \lambda}{ }^{\nu}$. Consequently, our proof of the theorem is completed.

Theorem 2.2. Under the present conditions, the ES curvature tensor $R_{\omega \mu \lambda}{ }^{\nu}$ of $g-E S X_{n}$ is a tensor involved in the following identity:

$$
\begin{equation*}
\left.R_{[\omega \mu \lambda]}^{\nu}=4 \delta_{[\lambda}^{\nu} \partial_{\mu} X_{\omega}\right] \tag{2.9}
\end{equation*}
$$

Proof. The relation (2.1) gives

$$
\begin{equation*}
R_{[\omega \mu \lambda]}{ }^{\nu}=L_{[\omega \mu \lambda]}^{\nu}+M_{[\omega \mu \lambda]}^{\nu}+N_{[\omega \mu \lambda]}{ }^{\nu} \tag{2.10}
\end{equation*}
$$

On the other hand, in virtue of (2.2),(2.3) and (2.4) we have

$$
\begin{equation*}
L_{[\omega \mu \lambda]}{ }^{\nu}=M_{[\omega \mu \lambda]}^{\nu}=0, \quad N_{[\omega \mu \lambda]}{ }^{\nu}=4 \delta_{[\mu}^{\nu} \partial_{\omega} X_{\lambda]} . \tag{2.11}
\end{equation*}
$$

Our identity (2.9) is a consequence of (2.10) and (2.11).
Theorem 2.3. (Generalized Ricci identity in $g-E S X_{n}$) Under the present conditions, the ES curvature tensor $R_{\omega \mu \lambda}{ }^{\nu}$ of $g-E S X_{n}$ satisfies the following identity:

$$
\begin{align*}
2 D_{[\omega} D_{\mu]} T_{\lambda_{1} \cdots \lambda_{p}}^{\nu_{1} \cdots \nu_{q}}= & -\sum_{\alpha=1}^{p} T_{\lambda_{1} \cdots \lambda_{p}}^{\nu_{1} \cdots \nu_{\alpha-1} \epsilon \nu_{\alpha+1} \cdots \nu_{p}} R_{\omega \mu \epsilon}{ }^{\nu_{\alpha}} \\
& +\sum_{\beta=1}^{q} T_{\lambda_{1} \cdots \lambda_{p-1} \epsilon \lambda_{p+1} \cdots \lambda_{q}}^{\nu_{1} \cdots \nu_{p}} R_{\omega \mu \lambda_{\beta}}{ }^{\epsilon}-4 X_{[\omega} D_{\mu]} T_{\lambda_{1} \cdots \lambda_{p}}^{\nu_{1} \cdots \nu_{q}} \tag{2.12}
\end{align*}
$$

Proof. Making use of (1.22), we see that (2.12) is a direct consequence of Hlavaty's results([7],1957)

$$
\begin{aligned}
2 D_{[\omega} D_{\mu]} T_{\lambda_{1} \cdots \lambda_{p}}^{\nu_{1} \cdots \nu_{q}} & =-\sum_{\alpha=1}^{p} T_{\lambda_{1} \cdots \lambda_{q}}^{\nu_{1} \cdots \nu_{\alpha-1} \epsilon \nu_{\alpha+1} \cdots \nu_{p}} R_{\omega \mu \epsilon}{ }^{\nu_{\alpha}} \\
& +\sum_{\beta=1}^{q} T_{\lambda_{1} \cdots \lambda_{p-1} \epsilon \lambda_{p+1} \cdots \lambda_{q}}^{\nu_{1} \cdots \nu_{p}} R_{\omega \mu \lambda_{\beta}}{ }^{\epsilon}+2 S_{\omega \mu}{ }^{\alpha} D_{\alpha} T_{\lambda_{1} \cdots \lambda_{q}}^{\nu_{1} \cdots \nu_{p}} .
\end{aligned}
$$

Theorem 2.4. (Generalized Bianchi's identity in $g-E S X_{n}$) Under the present conditions, the ES curvature tensor $R_{\omega \mu \lambda}{ }^{\nu}$ of $g-E S X_{n}$ satisfies the following identity:

$$
\begin{equation*}
D_{[\epsilon} R_{\omega \mu] \lambda}{ }^{\nu}=-4 X_{[\epsilon} L_{\omega \mu] \lambda}{ }^{\nu}+O_{[\epsilon \omega \mu] \lambda}{ }^{\nu} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{align*}
\frac{1}{8} O_{\epsilon \omega \mu \lambda}{ }^{\nu} & =\delta_{\lambda}^{\nu} X_{\epsilon} \partial_{\omega} X_{\mu}+X_{\epsilon} \delta_{\omega}^{\nu} \nabla_{\mu} X_{\lambda} \\
& +X_{\epsilon} \nabla_{\omega} U^{\nu}{ }_{\mu \lambda}+X_{\epsilon} \delta_{\mu}^{\nu} X_{\omega} X_{\lambda}+{ }^{(2)} X_{\lambda} X_{\epsilon} k_{\omega}{ }^{\nu} X_{\mu} \tag{2.15}
\end{align*}
$$

Proof. On a manifold X_{n} to which an Einstein's connection is connected, Hlavatý proved the following identity ([7], 1957):

$$
\begin{equation*}
D_{[\epsilon} R_{\omega \mu] \lambda}{ }^{\nu}=-2 S_{[\epsilon \omega}{ }^{\beta} R_{\mu] \beta \lambda}{ }^{\nu} \tag{2.16}
\end{equation*}
$$

In virtue of (1.22) and (2.1), the identity (2.16) may be written as

$$
\begin{aligned}
(2.17) D_{[\epsilon} R_{\omega \mu] \lambda}{ }^{\nu} & =-2 S_{[\epsilon \omega}{ }^{\beta} L_{\mu] \beta \lambda}{ }^{\nu}-2 S_{\left[\epsilon{ }^{\beta}\right.} M_{\mu] \beta \lambda}{ }^{\nu}-2 S_{[\epsilon \epsilon}{ }^{\beta} N_{\mu] \beta \lambda}{ }^{\nu} \\
& =-4 X_{[\epsilon} L_{\omega \mu] \lambda}{ }^{\nu}-4 X_{[\epsilon} M_{\omega \mu] \lambda}{ }^{\nu}-4 X_{[\epsilon} N_{\omega \mu] \lambda}{ }^{\nu}
\end{aligned}
$$

In virtue of (2.3), the second relation on the right-hand side of (2.17) may be expressed in the form

$$
\begin{align*}
& -4 X_{[\epsilon} M_{\omega \mu] \lambda}{ }^{\nu} \tag{2.18}\\
& =-8\left(\delta_{\lambda}^{\nu} X_{[\epsilon} \partial_{\mu} X_{\omega]}+X_{[\epsilon} \delta_{\mu}^{\nu} \nabla_{\omega]} X_{\lambda}+X_{[\epsilon} \nabla_{\mu} U^{\nu}{ }_{\omega] \lambda]}\right)
\end{align*}
$$

The relation (2.4) enalbes one to write the third term on the right-hand side of (2.7) as follows:

$$
\begin{equation*}
-4 X_{[\epsilon} N_{\omega \mu] \lambda}{ }^{\nu}=-8\left(X_{[\epsilon} \delta_{\omega}^{\nu} X_{\mu]} X_{\lambda}+{ }^{(2)} X_{\lambda} X_{[\epsilon} k_{\mu}^{\nu} X_{\omega]}\right) \tag{2.19}
\end{equation*}
$$

We now substitute (2.18) and (2.19) into (2.17) and make use of (2.15) to complete the proof of the theorem.

References

[1] Hwang, I.H., A study on the recurrence relations and vectors X_{λ}, S_{λ} and U_{λ} in $g-E S X_{n}$, Korean J. Math. 18(2) (2010), 133-139.
[2] Hwang, I.H., A study on the geometry of 2-dimensional RE-manifold X_{2}, J. Korean Math. Soc. 32(2) (1995), 301-309.
[3] Hwang, I.H., Three- and Five- dimensional considerations of the geometry of Einstein's g-unified field theory, Int. J . Theor. Phys. 27(9) (1988), 1105-1136.
[4] Chung, K.T., Einstein's connection in terms of ${ }^{*} g^{\lambda \nu}$, Nuovo Cimento Soc. Ital. Fis. B 27(X) (1963), 1297-1324.
[5] Datta, D.k., Some theorems on symmetric recurrent tensors of the second order, Tensor (N.S.) 15 (1964), 1105-1136.
[6] Einstein, A., The meaning of relativity, Princeton University Press, 1950.
[7] Hlavatý, V., Geometry of Einstein's unified field theory, Noordhoop Ltd., 1957.
[8] Mishra, R.S., n-dimensional considerations of unified field theory of relativity, Tensor (N.S.) 9 (1959), 217-225.
[9] Werde, R.C., n-dimensional considerations of the basic principles A and B of the unified field theory of relativity, Tensor (N.S.) 8 (1958), 95-122.

Department of Mathematics
University of Incheon
Incheon 406-772, Korea
E-mail: ho818@incheon.ac.kr

