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ON THE ES CURVATURE TENSOR IN g − ESXn

In Ho Hwang

Abstract. This paper is a direct continuation of [1]. In this paper
we investigate some properties of ES-curvature tensor of g − ESXn,
with main emphasis on the derivation of several useful generalized
identities involving it. In this subsequent paper, we are concerned
with contracted curvature tensors of g − ESXn and several gener-
alized identities involving them. In particular, we prove the first
variation of the generalized Bianchi’s identity in g − ESXn, which
has a great deal of useful physical applications.

1. Preliminaries

This paper is a direct continuation of our previous paper [1], which
will be denoted by I in the present paper. All considerations in this
paper are based on our results and symbolism of I([2],[3],[5],[6],[8],[9]).
Whenever necessary, these results will be quoted in the text. In this
section, we introduce a brief collection of basic concepts, notations, and
results of I, which are frequently used in the present paper.

(a) generalized n-dimensional Riemannian manifold Xn.
Let Xn be a generalized n-dimensional Riemannian manifold

referred to a real coordinate system xν , which obeys the coordinate
transformations xν → xν′ for which

det

(
∂x′

∂x

)
̸= 0.(1.1)

In n− g − UFT the manifold Xn is endowed with a real nonsym-
metric tensor gλµ, which may be decomposed into its symmetric
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part hλµ and skew-symmetric part kλµ:

gλµ = hλµ + kλµ.(1.2)

where

g = det(gλµ) ̸= 0, h = det(hλµ) ̸= 0, k = det(kλµ)(1.3)

In virtue of (1.3) we may define a unique tensor hλν by

hλµh
λν = δνµ.(1.4)

which together with hλµ will serve for raising and/or lowering
indices of tensors in Xn in the usual manner.There exists a unique
tensor ∗gλν satisfying

gλµ
∗gλν = gµλ

∗gνλ = δνµ.(1.5)

It may be also decomposed into its symmetric part ∗hλµ and skew-
symmetric part ∗kλµ:

∗gλν = ∗hλν + ∗kλν .(1.6)

The manifold Xn is connected by a general real connection Γλ
ν
µ

with the following transformation rule:

Γλ′
ν′
µ′ =

∂xν′

∂xα

(
∂xβ

∂xλ′
∂xγ

∂xµ′Γβ
α
γ +

∂2xα

∂xλ′
∂xµ′

)
.(1.7)

It may also be decomposed into its symmetric part Λλ
ν
µ and its

skew-symmetric part Sλν
ν , called the torsion of Γλ

ν
µ :

Γλ
ν
µ = Λλ

ν
µ + Sλµ

ν ; Λλ
ν
µ = Γ(λ

ν
µ); Sλµ

ν = Γ[λ
ν
µ].(1.8)

A connection Γλ
ν
µ is said to be Einstein if it satisfies the following

system of Einstein’s equations:

∂ωgλµ − Γλ
α
ωgαµ − Γω

α
µgλα = 0.(1.9)

or equivalently

Dωgλµ = 2Sωµ
αgλα.(1.10)

where Dω is the symbolic vector of the covariant derivative with
respect to Γλ

ν
µ. In order to obtain gλµ involved in the solution

for Γλ
ν
µ in (1.9), certain conditions are imposed. These conditions

may be condensed to

Sλ = Sλα
α = 0, R[µλ] = ∂[µYλ], R(µλ) = 0.(1.11)
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where Yλ is an arbitrary vector, and

Rωµλ
ν = 2(∂[µΓ|λ|

ν
ω] + Γα

ν
[µΓ|λ|

α
ω]), Rµλ = Rαµλ

α.(1.12)

If the system (1.10) admits a solution Γλ
ν
µ, it must be of the

form (Hlavatý, 1957)

Γλ
ν
µ =

{
ν
λµ

}
+ Sλµ

ν + U ν
λµ.(1.13)

where U ν
λµ = 2hναSα(λ

βkµ)β and

{
ν
λµ

}
are Christoffel symbols

defined by hλµ.
(b) Some notations and results

The following quantities are frequently used in our further consid-
erations:

g =
g

h
, k =

k

h
(1.14)

Kp = k[α1

α1kα2

α2 · · · kαp]
αp

, (p = 0, 1, 2, · · · ).(1.15)

(0)kλ
ν = δνλ,

(p)kλ
ν = kλ

α (p−1)kα
ν (p = 1, 2, · · · ).(1.16)

In Xn it was proved in [4] that

K0 = 1, Kn = k if n is even, and Kp = 0 if p is odd.(1.17)

g = h(1 +K1 +K2 + · · ·+Kn)(1.18)

or

g = 1 +K1 +K2 + · · ·+Kn.

n−σ∑
s=0

Ks
(n−s+p)kλ

ν = 0 (p = 0, 1, 2, · · · ).(1.19)

We also use the following useful abbreviations for an arbitrary
vector Y , for p = 1, 2, 3, · · · :

(p)Yλ =(p−1) kλ
αYα.(1.20)

(p)Y ν =(p−1) kν
αY

α.(1.21)
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(c) n-dimensional ES manifold ESXn In this subsection, we dis-
play an useful representation of the ES-connection in n-g-UFT.

Definition 1.1. A connection Γλ
ν
µ is said to be semi-symmetric

if its torsion tensor Sλµ
ν is of the form

Sλµ
ν = 2δν[λXµ](1.22)

for an arbitrary non-null vector Xµ.

A connection which is both semi-symmetric and Einstein is
called a ES-connection. An n-dimensional generalized Riemann-
ian manifold Xn, on which the differential geometric structure
is imposed by gλµ by means of a ES-connection, is called an n-
dimensional ES-manifold. We denote this manifold by g − ESXn

in our further considerations.

Theorem 1.2. Under the condition (1.22), the system of equa-
tions (1.10) is equivalent to

Γλ
ν
µ =

{
ν
λµ

}
+ 2kν

(λXµ) + 2δν[λXµ].(1.23)

Proof. Substituting (1.22) for Sλµ
ν into (1.13), we have the rep-

resentation (1.23).

2. The ES curvature tensor in g − ESXn

The n-dimensional ES curvature tensor Rωµλ
ν of g − ESXn is the

curvature tensor defined by the ES-connection Γλ
ν
µ under the present

conditions. A lengthy, but precise and surveyable tensorial representa-
tion of Rωµλ

ν in terms of gλµ and their first two derivatives may be ob-
tained by simply substituting (1.13) for Γλ

ν
µ into (1.12). In this section,

we present more concise and useful tensorial representation of Rωµλ
ν in

terms of gλµ and the ES vector Xλ, and prove three identities involving
it.

Theorem 2.1. Under the present conditions, the ES curvature tensor
Rωµλ

ν of g − ESXn may be given by

Rωµλ
ν = Lωµλ

ν +Mωµλ
ν +Nωµλ

ν(2.1)
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where

Lωµλ
ν = 2

(
∂[µ

{
ν
ω]λ

}
+

{
ν
α[µ

}{
α
ω]λ

})
(2.2)

Mωµλ
ν = 2(δνλ∂[µXω] + δν[µ∇ω]Xλ +∇[µU

ν
ω]λ)(2.3)

Nωµλ
ν = 2(δν[ωXµ]Xλ +

(2) Xλk[µ
νXω]).(2.4)

Proof. Substitute (1.13) into (1.12) and make use of (2.2) to obtain

Rωµλ
ν = 2∂[µ


 ν

ω]λ


+Xω]δ

ν
λ − δνω]Xλ + U ν

ω]λ


+ 2

({
ν
α[µ

}
+ δναX[µ −Xαδ

ν
[µ + U ν

α[µ

)
×

({
α
ω]λ

}
+Xω]δ

α
λ − δαω]Xλ + Uα

ω]λ

)
= Lωµλ

ν + 2δνλ∂[µXω] + 2

(
δν[µ∂ω]Xλ − δν[µ

{
α
ω]λ

}
Xα

)
(2.5)

+ 2

(
∂[µU

ν
ω]λ +

{
α
λ[ω

}
U ν

µ]α +

{
ν
α[µ

}
Uα

ω]λ

)
+ 2

(
δν[ωXµ]Xλ −Xαδ

ν
[µU

α
ω]λ + U ν

α[µU
α
ω]λ

)
.

In virtue of (1.22), the sum of the second, third and fourth terms on
the right-hand side of (2.5) is Mωµλ

ν . On the other hand, using (1.22),
the first relation of (3.4), and (3.10) in I, we have

U ν
λµ = 2k(λ

νXµ)(2.6)

−Xαδ
ν
[µU

α
ω]λ = 0(2.7)

U ν
α[µU

α
ω]λ =(2) Xλk[µ

νXω].(2.8)

Substituting (2.7) and (2.8) into the fifth term of (2.5), we find that it
is equal to Nωµλ

ν . Consequently, our proof of the theorem is completed.
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Theorem 2.2. Under the present conditions, the ES curvature tensor
Rωµλ

ν of g − ESXn is a tensor involved in the following identity:

R[ωµλ]
ν = 4δν[λ∂µXω](2.9)

Proof. The relation (2.1) gives

R[ωµλ]
ν = L[ωµλ]

ν +M[ωµλ]
ν +N[ωµλ]

ν(2.10)

On the other hand, in virtue of (2.2),(2.3) and (2.4) we have

L[ωµλ]
ν = M[ωµλ]

ν = 0, N[ωµλ]
ν = 4δν[µ∂ωXλ].(2.11)

Our identity (2.9) is a consequence of (2.10) and (2.11).

Theorem 2.3. (Generalized Ricci identity in g − ESXn) Under the
present conditions, the ES curvature tensor Rωµλ

ν of g−ESXn satisfies
the following identity:

2D[ωDµ]T
ν1···νq
λ1···λp

= −
p∑

α=1

T
ν1···να−1ϵνα+1···νp
λ1···λp

Rωµϵ
να

+

q∑
β=1

T
ν1···νp
λ1···λp−1ϵλp+1···λq

Rωµλβ

ϵ − 4X[ωDµ]T
ν1···νq
λ1···λp

(2.12)

Proof. Making use of (1.22), we see that (2.12) is a direct consequence
of Hlavatý’s results([7],1957)

2D[ωDµ]T
ν1···νq
λ1···λp

= −
p∑

α=1

T
ν1···να−1ϵνα+1···νp
λ1···λq

Rωµϵ
να

+

q∑
β=1

T
ν1···νp
λ1···λp−1ϵλp+1···λq

Rωµλβ

ϵ + 2Sωµ
αDαT

ν1···νp
λ1···λq

.(2.13)

Theorem 2.4. (Generalized Bianchi’s identity in g−ESXn ) Un-
der the present conditions, the ES curvature tensor Rωµλ

ν of g −ESXn

satisfies the following identity:

D[ϵRωµ]λ
ν = −4X[ϵLωµ]λ

ν +O[ϵωµ]λ
ν(2.14)

where
1

8
Oϵωµλ

ν = δνλXϵ∂ωXµ +Xϵδ
ν
ω∇µXλ

+ Xϵ∇ωU
ν
µλ +Xϵδ

ν
µXωXλ +

(2) XλXϵkω
νXµ(2.15)
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Proof. On a manifold Xn to which an Einstein’s connection is con-
nected, Hlavatý proved the following identity([7], 1957):

D[ϵRωµ]λ
ν = −2S[ϵω

βRµ]βλ
ν(2.16)

In virtue of (1.22) and (2.1), the identity (2.16) may be written as

D[ϵRωµ]λ
ν = −2S[ϵω

βLµ]βλ
ν − 2S[ϵω

βMµ]βλ
ν − 2S[ϵω

βNµ]βλ
ν(2.17)

= −4X[ϵLωµ]λ
ν − 4X[ϵMωµ]λ

ν − 4X[ϵNωµ]λ
ν

In virtue of (2.3), the second relation on the right-hand side of (2.17)
may be expressed in the form

− 4X[ϵMωµ]λ
ν(2.18)

= −8(δνλX[ϵ∂µXω] +X[ϵδ
ν
µ∇ω]Xλ +X[ϵ∇µU

ν
ω]λ]).

The relation (2.4) enalbes one to write the third term on the right-hand
side of (2.7) as follows:

−4X[ϵNωµ]λ
ν = −8(X[ϵδ

ν
ωXµ]Xλ +

(2) XλX[ϵkµ
νXω]).(2.19)

We now substitute (2.18) and (2.19) into (2.17) and make use of (2.15)
to complete the proof of the theorem.
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