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CONVERGENCE OF INTEGRABLE SEMIGROUPS

Young S. Lee

Abstract. We study some properties of integrable semigroup and
its generator, and then we establish convergence of integrable semi-
groups on the norming dual pairs.

1. Introduction

Let X and Y be Banach spaces and let ⟨·, ·⟩ be a bilinear form on
X×Y which separates points, i.e. ⟨x, y⟩ = 0 for all x ∈ X implies y = 0
and ⟨x, y⟩ = 0 for all y ∈ Y implies x = 0.

A norming dual pair is a triple (X, Y, ⟨·, ·⟩) satisfying

||x|| = sup{|⟨x, y⟩| : y ∈ Y, ||y|| ≤ 1}

and

||y|| = sup{|⟨x, y⟩| : x ∈ X, ||x|| ≤ 1}.
We will write (X, Y ) instead of (X, Y, ⟨·, ·⟩) if the duality pairing

is understood. Note that if (X, Y ) is a norming dual pair then Y
is isometrically isomorphic to a closed subspace of X∗, and so we can
identify Y as a closed subspace of X∗. For more information about the
dual pair, see [2, 3].

We define a locally convex topology on X. For a bounded subset
M ⊂ Y , pM(x) = supy∈M |⟨x, y⟩| defines a seminorm on X. Let M be
a collection of bounded subsets of Y . Then the collection of seminorms
{pM : M ∈ M} defines a locally convex topology on X if and only if
M is separating, i.e. for every x ∈ X there exists M ∈ M such that
pM(x) ̸= 0. In this case τM denotes the locally convex topology on X
induced by {pM : M ∈ M}.
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A locally convex topology τ on X is called consistent if (X, τ)′ = Y ,
i.e. every τ -continuous linear functional ϕ on X is of the form ϕ(x) =
⟨x, y⟩ for some y in Y . Every consistent topology is of form τM for
some separating collection M of bounded subsets of Y , and there exists
a coarsest consistent topology, namely the weak topology σ(X, Y ) = τM,
where M is a collection of all finite subsets of Y (see [3]).

If τ is a locally convex topology on X, L(X, τ) is the space of all
τ -continuous linear operators on X. If τ is a norm topology, we write
L(X) for L(X, || · ||).

In this paper, we study convergence of integrable semigroups on norm-
ing dual pairs. We introduce integrable semigroup which may have no
continuity properties. And then we establish Trotter-Kato type conver-
gence theorem, i.e. the convergence of generators in some sense implies
the convergence of integrable semigroups.

2. Convergence Theorem

First, we give a definition and some properties of integrable semi-
groups.

Definition 1. Let (X, Y ) be a norming dual pair. A semigroup on
(X, Y ) is a family of operators {T (t) : t ≥ 0} ⊂ L(X, σ) such that
T (t+ s) = T (t)T (s) for all s, t ≥ 0 and T (0) = I, the identity operator
on X. A semigroup is said to be exponentially bounded if there exist
M ≥ 1 and ω ∈ R such that ||T (t)|| ≤ Meωt for all t ≥ 0.

An exponentially bounded semigroup is said to be integrable if for
each λ with Reλ > ω, there exists an operator R(λ) ∈ L(X, σ) such
that

⟨R(λ)x, y⟩ =
∫ ∞

0

e−λt⟨T (t)x, y⟩dt

for all x ∈ X and y ∈ Y .
By the semigroup property of {T (t) : t ≥ 0}, {R(λ) : Reλ > ω}

is a pseudoresolvent (see [1]). Hence there exists a unique multivalued
operator A such that R(λ) = (λ−A)−1 and the kernel and the range of
R(λ) are independent of λ (see [4]). If R(λ) is injective, then A is single
valued. In this case, we say that {T (t) : t ≥ 0} has a generator A and
R(λ) = (λ−A)−1. In general, R(λ) may not be injective because we did
not require any continuity of T (t)x.
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We now state some properties of integrable semigroups.

Lemma 2. Let {T (t) : t ≥ 0} be an integrable semigroup on the
norming dual pair (X, Y ) with the generator A. Then

(i) for x ∈ X and t ≥ 0
∫ t

0
T (s)xds ∈ D(A) and T (t)x − x =

A
∫ t

0
T (s)xds.

(ii) (λR(λ)− I)
∫ t

0
T (s)xds = (T (t)− I)R(λ)x for all x ∈ X and t ≥ 0.

(iii) The following statements are equivalent.

(a) x ∈ D(A).
(b) T (t)x is continuous at 0.
(c) limλ→∞ λR(λ)x = x.

Proof. (i) is Proposition 2.4 in [3].
(ii) By (i), Lemma 4.8 and Proposition 5.3 in [2], we have

(λR(λ)− I)

∫ t

0

T (s)xds = AR(λ)

∫ t

0

T (s)xds

= A

∫ t

0

T (s)R(λ)xds

= T (t)R(λ)x−R(λ)x.

(iii) By Proposition 2.4 in [3] , T (t)x is continuous for each x ∈ D(A).
By the continuity of T (t)x for x ∈ D(A) and exponential bounded-
ness of ||T (t)||, (a) implies (b). Suppose that T (t)x is continuous
at 0. Then for a given ε > 0 there exists a δ > 0 such that
||T (t)x− x|| < ε for all 0 ≤ t < δ. Let y ∈ Y and ||y|| ≤ 1.

Then

⟨λR(λ)x− x, y⟩

=

∫ ∞

0

λe−λt⟨T (t)x− x, y⟩dt

=

∫ δ

0

λe−λt⟨T (t)x− x, y⟩dt+
∫ ∞

δ

λe−λt⟨T (t)x− x, y⟩dt.
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Hence we have

|⟨λR(λ)x− x, y⟩|

≤
∫ δ

0

|λe−λt⟨T (t)x− x, y⟩|dt+
∫ ∞

δ

|λe−λt⟨T (t)x− x, y⟩|dt

≤ ε

∫ δ

0

λe−λtdt+

∫ ∞

δ

λe−λt(Meωt + 1)||x||dt

= ε(1− e−λδ) + (
λM

λ− ω
e−(λ−ω)δ + e−λδ)||x||.

Since (X, Y ) is a norming dual pair, we have limλ→∞ λR(λ)x = x.
Therefore (b) implies (c) since R(λ)x ∈ D(A), (c) implies (a).

Note that if the generator A is densely defined, then an integrable
semigroup is a C0 semigroup, by Lemma 2 (iii). We now consider the
continuity of semigroups.

Definition 3. Let {T (t) : t ≥ 0} be a semigroup on (X, Y ) and
let τ be a locally convex topology on X. {T (t) : t ≥ 0} is said to be
τ -continuous (at 0) if for every x ∈ X T (t)x is τ -continuous (at 0) in
t ≥ 0.

Recall that a semigroup {T (t) : t ≥ 0} on a locally convex space
(X, τ) is said to be equicontinuous if for every τ -continuous seminorm
p, there exists a τ -continuous seminorm q such that p(T (t)x) ≤ q(x) for
all x ∈ X and t ≥ 0. A semigroup {T (t) : t ≥ 0} is said to be locally
equicontinuous if {T (t) : 0 ≤ t ≤ t0} is equicontinuous for each t0 > 0.
(See [5].)

In general, τ -continuity at 0 does not imply τ -continuity. Since τ -
continuity at 0 implies sequential τ -density of D(A), {T (t) : t ≥ 0} is
τ -continuous if it is locally τ -equicontinuous by Proposition 3.3 in [3].

Theorem 4. Let {T (t) : t ≥ 0} be an equicontinuous integrable
semigroup on the norming dual pair (X, Y ) and let τ be a consistent
locally convex topology on X. Then {T (t) : t ≥ 0} is τ -continuous at
0 if and only if τ − limλ→∞ λR(λ)x = x for all x ∈ X. Moreover, R(λ)
is injective and so {T (t) : t ≥ 0} has a generator A such that D(A) is
sequentially τ -dense in X.

Proof. The necessary condition is given in Theorem 2.10 in [3].
Since τ is consistent, there exists a separating collectionM of bounded

subsets of Y such that τ = τM. Let x ∈ X and S ∈ M. Then there
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exists {xn} in D(A) such that τ − limn→∞ xn = x. By Lemma 2, T (t)xn

is continuous at 0 and so T (t)xn is τ -continuous at 0. For y ∈ S, we
have

|⟨T (t)x− x, y⟩|
≤ |⟨T (t)x− T (t)xn, y⟩|+ |⟨T (t)xn − xn, y⟩|+ |⟨xn − x, y⟩|.

By the equicontinuity of {T (t) : t ≥ 0}, there exists n such that

|⟨T (t)(x− xn), y⟩|+ |⟨xn − x, y⟩| < ε/2.

Since T (t)xn is continuous at 0, there exists δ > 0 such that |⟨T (t)xn −
xn, y⟩| < ε/2 for all 0 ≤ t < δ. Since S ∈ M is arbitrary, T (t)x is
τ -continuous at 0 for all x ∈ X.

Now we can prove the following convergence theorem for integrable
semigroups.

Theorem 5. Let τ be a consistent locally convex topology on X. Let
{Tn(t) : t ≥ 0} and {T (t) : t ≥ 0} be integrable semigroups on (X, Y )
with the generators An and A, respectively satisfying ||Tn(t)|| ≤ Meωt

and ||T (t)|| ≤ Meωt for all t ≥ 0.

Suppose that {Tn(t) : t ≥ 0} are τ -equicontinuous, uniformly in n,
i.e. for any τ -continuous seminorm p on X, there exists a τ -continuous
seminorm q on X such that p(Tn(t)x) ≤ q(x) for all t ≥ 0, x ∈ X, and
n = 1, 2, · · · . Suppose that τ − limn→∞ Rn(λ)x = R(λ)x for all x ∈ X.
Then

τ − lim
n→∞

Tn(t)x = T (t)x

for all x ∈ D(A), and the convergence is uniform on bounded t-intervals.

Proof. Since τ is consistent, τ = τM for some separating collection M
of bounded subsets of Y . Let x ∈ D(A) and S ∈ M. Then x = R(λ)z
for some z ∈ X and for y ∈ S

⟨Tn(t)x− T (t)x, y⟩
= ⟨Tn(t)R(λ)z − T (t)R(λ)z, y⟩
= ⟨Tn(t)R(λ)z − Tn(t)Rn(λ)z, y⟩+ ⟨Tn(t)Rn(λ)z −Rn(λ)z, y⟩
+⟨Rn(λ)z −R(λ)z, y⟩+ ⟨R(λ)z − T (t)R(λ)z, y⟩.
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Since {Tn(t) : t ≥ 0} are τ -equicontinuous, uniformly in n, there exists
a continuous seminorm q on X such that

|⟨Tn(t)R(λ)z − Tn(t)Rn(λ)z, y⟩| ≤ pS(Tn(t)(R(λ)z −Rn(λ)z))

≤ q(R(λ)z −Rn(λ)z).

Let ε > 0 be given. Since limn→∞Rn(λ)x = R(λ)x for all x ∈ X, there
exists n0 such that

|⟨Tn(t)R(λ)z − Tn(t)Rn(λ)z, y⟩|+ |⟨Rn(λ)z −R(λ)z, y⟩| < ε/2

for all n > n0. By Lemma 2, we have

⟨Tn(t)Rn(λ)z −Rn(λ)z, y⟩

= ⟨(λRn(λ)− I)

∫ t

0

Tn(s)zds, y⟩

=

∫ ∞

0

λe−λr⟨Tn(r)

∫ t

0

Tn(s)zds−
∫ t

0

Tn(s)zds, y⟩dr

=

∫ ∞

0

λe−λr⟨
∫ t

0

Tn(r + s)zds−
∫ t

0

Tn(s)zds, y⟩dr

=

∫ ∞

0

λe−λr⟨
∫ t+r

t

Tn(s)zds−
∫ r

0

Tn(s)zds, y⟩dr.

Hence for 0 ≤ t ≤ T we have

|⟨Tn(t)Rn(λ)z −Rn(λ)z, y⟩|

≤
∫ ∞

0

λe−λr(

∫ t+r

t

||Tn(s)z||ds+
∫ r

0

||Tn(s)z||ds)||y||dr

≤
∫ ∞

0

λe−λrM(

∫ t+r

t

eωsds+

∫ r

0

eωsds)||z||||y||dr

≤ M ||z||||y||
∫ ∞

0

λe−λr(eω(t+r)r + eωrr)dr

= M ||z||||y||
∫ ∞

0

λe−(λ−ω)rr(eωt + 1)dr

≤ M ||z||||y|| λ

(λ− ω)2
(eωT + 1) → 0

as λ → ∞. By the similar argument for |⟨R(λ)z−T (t)R(λ)z, y⟩|, there
exists λ0 such that

|⟨Tn(t)Rn(λ)z −Rn(λ)z, y⟩|+ |⟨R(λ)z − T (t)R(λ)z, y⟩| < ε/2
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for all λ > λ0. Thus we have |⟨Tn(t)x − T (t)x, y⟩| < ε for all n ≥ n0

and y ∈ S. Since S ∈ M is arbitrary, the result follows.

Remark 6. In addition to assumptions of Theorem 5, suppose that
{T (t) : t ≥ 0} is continuous at 0. By Theorem 4, the above convergence
theorem holds for all x ∈ X.
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