A STUDY ON OPERATORS SATISFYING $|T^2| \ge |T^*|^2$

JAE WON LEE AND IN HO JEON*

ABSTRACT. Let \mathcal{A}^* denotes the class of operators satisfying $|T^2| \geq |T^*|^2$. In this paper, we show if the restriction to a non-trivial invariant subspace \mathcal{M} of an operator $T \in \mathcal{A}^*$ is normal, then \mathcal{M} reduces T.

1. Introduction

Let $\mathscr{L}(\mathscr{H})$ denotes the algebra of bounded linear operators on a complex infinite dimensional Hilbert space \mathscr{H} . Recall ([1] and [3]) that $T \in \mathscr{L}(\mathscr{H})$ is called *hyponormal* if $T^*T \geq TT^*$, and T is called *paranormal* (resp.*-paranormal) if $||T^2x|| \geq ||Tx||^2$ (resp. $||T^2x|| \geq ||T^*x||^2$) for all unit vector $x \in \mathscr{H}$. Following [3] and [5] we say that $T \in \mathscr{L}(\mathscr{H})$ belongs to class A if $|T^2| \geq |T|^2$. Recently, B. P. Duggal, I. H. Jeon, I. H. Kim ([2]) consider a following new class of operators; we say that an operator $T \in \mathscr{L}(\mathscr{H})$ belongs to *-class A if

$$|T^2| \ge |T^*|^2.$$

For brevity, we shall denote classes of hyponormal operators, paranormal operators, *-paranormal operators, class A operators, and *-class Aoperators by \mathcal{H} , \mathcal{PN} , \mathcal{PN}^* , A, and A^* , respectively. From [3] and [2], it is well known that

$$\mathcal{H} \ \subset \ \mathcal{A} \ \subset \ \mathcal{PN} \ ext{and} \ \ \mathcal{H} \ \subset \ \mathcal{A}^* \ \subset \ \mathcal{PN}^*.$$

In [2], many results of *-paranormal operators were proved. In particular, *-paranormal operator have SVEP, the single-valued extension

Received February 17, 2011. Revised March 2, 2011. Accepted March 10, 2011.

²⁰⁰⁰ Mathematics Subject Classification: 47B20.

Key words and phrases: *-class A operator, the property (β) .

This paper was supported by Research Fund, Kumoh National Institute of Technology .

^{*}Corresponding author.

property, everywhere. Indeed, more is true: *-paranormal operators satisfy (Bishop's) property (β), where $A \in \mathscr{L}(\mathscr{H})$ satisfies property (β) if, for an open subset \mathcal{U} of the complex plane and a sequence $\{f_n\}$ of analytic functions $f_n : \mathcal{U} \longrightarrow \mathscr{H}$, $(A - \lambda)f_n(\lambda)$ converges uniformly to 0 on compact subsets of \mathcal{U} implies f_n converges uniformly to 0 on compact subsets of \mathcal{U} [6]. Since an operator $T \in \mathcal{A}^*$ is *-paranormal [2], we can see the following.

PROPOSITION 1.1. An operator $T \in \mathcal{A}^*$ satisfies (Bishop's) property (β) , and so have SVEP.

In this paper, we show if the restriction to a non-trivial invariant subspace \mathcal{M} of a *-class A operator T is normal, then \mathcal{M} reduces T. Also, from this result, we have some corollaries.

2. Results

We begin with the following result showed in [2].

LEMMA 2.1. If $T \in \mathcal{A}^*$ and \mathcal{M} is an invariant subspace of T, then $T \mid_{\mathcal{M}} \in \mathcal{A}^*$.

The following is a structural result.

THEOREM 2.2. Let \mathcal{M} be a non-trivial invariant subspace for an operator $T \in \mathcal{A}^*$ and let $T \mid_{\mathcal{M}}$ be the restriction of T to \mathcal{M} . If $T \mid_{\mathcal{M}}$ is normal, then \mathcal{M} reduces T.

Proof. Let $T = \begin{pmatrix} T \mid_{\mathcal{M}} & A \\ 0 & B \end{pmatrix}$ on $\mathcal{M} \oplus \mathcal{M}^{\perp}$. Then from matrices calculations we have

$$TT^* = \begin{pmatrix} T \mid_{\mathcal{M}} T \mid_{\mathcal{M}}^* + AA^* & AB^* \\ BA^* & BB^* \end{pmatrix}$$

and

$$T^{*2}T^{2} = \begin{pmatrix} T |_{\mathcal{M}}^{*2}T |_{\mathcal{M}}^{2} & T |_{\mathcal{M}}^{*2}T |_{\mathcal{M}}A + T |_{\mathcal{M}}^{*2}AB \\ A^{*}T |_{\mathcal{M}}^{*}T |_{\mathcal{M}}^{2} + BA^{*}T |_{\mathcal{M}}^{2} & D \end{pmatrix},$$

where

$$D = (A^*T \mid_{\mathcal{M}}^* + BA^*)T \mid_{\mathcal{M}} A + (A^*T \mid_{\mathcal{M}}^* + BA^*)AB + B^*B.$$

62

Let P be the orthogonal projection of \mathscr{H} onto \mathcal{M} . Then we have

$$\begin{pmatrix} T \mid_{\mathcal{M}} T \mid_{\mathcal{M}}^{*} + AA^{*} & 0 \\ 0 & 0 \end{pmatrix} = PTT^{*}P$$

$$= P|T^{*}|^{2}P$$

$$\leq P(T^{*2}T^{2})^{\frac{1}{2}}P$$

$$\leq (PT^{*2}T^{2}P)^{\frac{1}{2}}$$
by Hansen's inequality(cf.[4]))
$$= \begin{pmatrix} T \mid_{\mathcal{M}}^{*}T \mid_{\mathcal{M}}^{2} & 0 \\ 0 & 0 \end{pmatrix}^{\frac{1}{2}},$$

which implies that

$$T\mid_{\mathcal{M}} T\mid_{\mathcal{M}}^* + AA^* \leq T\mid_{\mathcal{M}}^* T\mid_{\mathcal{M}}.$$

Since $T \mid_{\mathcal{M}}$ is normal, we have that A = 0. Hence \mathcal{M} reduces T. \Box

The following result was proved in [2]. We give a different proof using Theorem 2.2.

COROLLARY 2.3. Let $T \in \mathcal{A}^*$. If $(T - \lambda)x = 0$, then $(T - \lambda)^*x = 0$

Proof. Let $\mathcal{M} = \operatorname{span}\{x\}$, $T = \begin{pmatrix} \lambda & A \\ 0 & B \end{pmatrix}$ on $\mathcal{M} \oplus \mathcal{M}^{\perp}$, and P the orthogonal projection of \mathscr{H} onto \mathcal{M} . Then $T|_{\mathcal{M}} = \lambda$ and $T|_{\mathcal{M}}$ is an normal operator. By Theorem 2.2, \mathcal{M} reduces T, and so A = 0. \Box

P. R. Halmos([4], Problem 161) proved that a partial isometry is subnormal if and only if it is hyponormal. The following result is analogous to this one.

COROLLARY 2.4. A partial isometry T is quasinormal if and only if $T \in \mathcal{A}^*$.

Proof. Let $T \in \mathcal{A}^*$ be a partial isometry. Then it is suffices to show that T is quasinormal. First, we claim that R(T), the range of T, is contained in $N(T)^{\perp}$, the initial space of T. It follows from Theorem 2.2 and Corollary 2.3 that N(T) and $N(T)^{\perp}$ are reducing subspaces of T. Since T is a partial isometry, T is of the form $U \oplus 0$, where U is an isometry. So simple calcuations show that $T(T^*T) = (T^*T)T$, i.e., T is quasinormal.

References

- S. C. Arora and J. K. Thukral, On a class of operators, Glas. Mat. Ser. III 21(1986), 381–386.
- [2] B. P. Dugall, I. H. Jeon, and I. H. Kim, On *-paranormal contractions and properties for *-class A operators, preprint(2010).
- [3] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London 2001.
- [4] P. B. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton 1967.
- [5] I. H. Jeon and I. H. Kim, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T$, Linear Algebra Appl. **418** (2006), 854–862.
- [6] K. B. Laursen and M. N. Neumann, Introduction to local spectral theory, Clarendon Press, Oxford 2000.

Department of Applied Mathematics Kumoh National Institute of Technology Gumi 730-701, Korea *E-mail*: ljaewon@mail.kumoh.ac.kr

Department of Mathematics Education Seoul National University of Education Seoul 137-742, Korea *E-mail*: jihmath@snue.ac.kr