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AN APPLICATION OF THE LERAY-SCHAUDER

DEGREE THEORY TO THE VARIABLE COEFFICIENT

SEMILINEAR BIHARMONIC PROBLEM

Q-Heung Choi and Tacksun Jung∗

Abstract. We obtain multiplicity results for the nonlinear bihar-
monic problem with variable coefficient. We prove by the Leray-
Schauder degree theory that the nonlinear biharmonic problem has
multiple solutions for the biharmonic problem with the variable co-
efficient semilinear term under some conditions.

1. Introduction

In this paper we consider the multiplicity result for the following
biharmonic equation with the variable coefficient semilinear term and
Dirichlet boundary condition

∆2u+ c∆u = b(x)u+ + sψ1(x), in Ω,(1.1)

u = 0, ∆u = 0, on ∂Ω

where ∆ is the Laplace operator is the positive eigenfunction of ∆+c∆−
b(x) with Dirichlet boundary condition. Here Ω is a bounded domain in
Rn with smooth boundary ∂Ω, b(x) is Hölder continuous in Ω. We set
c ∈ R, u+ = max{u, 0} and u− = −min{u, 0}.

Let λk(k = 1, 2, · · · ) denote the eigenvalues and ϕk(k = 1, 2, · · · ) the
corresponding eigenfunctions, suitably normalized with respect to L2(Ω)
inner product, of the eigenvalue problem

∆u+ λu = 0 in Ω,
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u = 0 on ∂Ω,

where each eigenvalue λk is repeated as often as its multiplicity.
Choi and Jung [1] showed that the problem

∆2u+ c∆u = bu+ + s, in Ω,(1.2)

u = 0, ∆u = 0, on ∂Ω

has at least two solutions when c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c),
s < 0 and when λ1 < c < λ2, b < λ1(λ1 − c), s > 0. They obtained
these results by using the variational reduction method. They [2] also
proved that when c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c) and s < 0, (1.2)
has at least three nontrivial solutions by using degree theory. Tarantello
[5] also studied the jumping problem

∆2u+ c∆u = b((u+ 1)+ − 1), in Ω,(1.3)

u = 0, ∆u = 0, on ∂Ω.

She show that if c < λ1 and b ≥ λ1(λ1−c), then (1.3) has at least two
solutions, one of which is a negative solution. She obtained this result by
degree theory. Micheletti and Pistoia [4] also proved that if c < λ1 and
b ≥ λ2(λ2 − c), then (1.3) has at least four solutions by the variational
linking theorem and Leray-Schauder degree theory.

In section 2 we investigate a priori estimate of the solutions of (1.1)
and the no solvability condition. In section 3 we prove the existence of
multiple solutions of (1.1).

2. Preliminaries

Let λk(k = 1, 2, · · · ) denote the eigenvalues and ϕk(k = 1, 2, · · · ) the
corresponding eigenfunctions, suitably normalized with respect to L2(Ω)
inner product, of the eigenvalue problem

∆u+ λu = 0 in Ω,

u = 0 on ∂Ω,

where each eigenvalue λk is repeated as often as its multiplicity. We
recall that λ1 < λ2 ≤ λ3 . . . → +∞, and that ϕ1(x) > 0 for x ∈ Ω. The
eigenvalue problem

∆2u+ c∆u = Γu in Ω,

u = 0, ∆u = 0 on ∂Ω
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has also infinitely many eigenvalues Γk = λk(λk − c), k ≥ 1 and corre-
sponding eigenfunctions ϕk, k ≥ 1. We note that

λ1(λ1 − c) < λ2(λ2 − c) ≤ λ3(λ3 − c) < · · · .

The eigenvalue problem

∆2u+ c∆u− b(x)u = Λu in Ω,

u = 0, ∆u = 0 on ∂Ω

has also infinitely many eigenvalues Λk, k ≥ 1, and ψk, k ≥ 1 the
corresponding eigenfunctions. We assume that the eigenfunctions are
normalized with respect to H inner product. Standard eigenvalue theory
gives that

Λ1 < Λ2 ≤ Λ3 ≤ · · · , Λk → +∞ as k → +∞,

ψ1(x) > 0 in Ω.

Let L2(Ω) be a square integrable function space defined on Ω. Any
element u in L2(Ω) can be written as

u =
∑

hkψk with
∑

h2k <∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑

|Λk| <∞}.

Then this is a complete normed space with a norm

∥u∥ = [
∑

|Λk|h2k]
1
2 .

Since Λk → +∞ and c is fixed, we have

(i) ∆2u+ c∆u− b(x)u ∈ H implies u ∈ H.
(ii) ∥u∥ ≥ C∥u∥L2(Ω), for some C > 0.
(iii) ∥u∥L2(Ω) = 0 if and only if ∥u∥ = 0.

Now we investigate the no solvability condition for (1.1):

Lemma 2.1. Assume that c < λ1 and λn(λn−c) < b(x) < λn+1(λn+1−
c), n ≥ 1. Then we have:
(i) If s > 0, then (1.1) has no solution.
(ii) If s = 0, then (1.1) has only the trivial solution u = 0.
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Proof. We rewrite (1.1) as

(∆2 + c∆− b(x) − Λ1)u(2.1)

= −Λ1u
+ + (b(x) + Λ1)u

− + sψ1(x).

Taking the inner product of both sides of (2.1), we have

0 = ((∆2 + c∆− b(x)− Λ1)u, ψ1(x))(2.2)

= (−Λ1u
+ + (b(x) + Λ1)u

− + sψ1(x), ψ1(x)).

The conditions c < λ1 and λn(λn − c) < b(x) < λn+1(λn+1 − c), n ≥ 1
imply that Λ1 < 0 and b(x) + Λ1 ≥ 0. Thus it follows that for s > 0 the
left hand side of (2.2) is 0 and the right hand side of (2.2) is positive.
Then (1.1) has no solution. If s = 0, then the only possibility to hold
(2.2) is u = 0.

Lemma 2.2. Assume that λ1 < c < λ2 and b(x) < λ1(λ1 − c). Then
we have:
(i) If s < 0, then (1.1) has no solution.
(ii) If s = 0, then (1.1) has only trivial solution.

Proof. The conditions λ1 < c < λ2 and b(x) < λ1(λ1 − c) imply that
Λ1 > 0 and b(x) + Λ1 ≤ 0. It follows that from (2.2),

0 = ((∆2 + c∆− b(x)− Λ1)u, ψ1(x))

= (−Λ1u
+ + (b(x) + Λ1)u

− + sψ1(x), ψ1(x)) ≤ s.

If s < 0, the left hand side of (2.2) is 0 and the right hand side of
(2.2) is negative. Thus (1.1) has no solution. If s = 0, then the only
possibility to hold the above equation is u = 0.

We have a prior bound for the solutions of (1.1).

Lemma 2.3. Assume that Λ1 < −ϵ < 0 and b(x) + Λ1 ≥ ϵ > 0. Then
there exist a constant C > 0 and s0 < 0 such that if u is a solution of
(1.1) with s, s ≥ s0, then ∥u∥ ≤ C.

Proof. From (2.2) we have

s = ((Λ1u
+ − (b(x) + Λ1)u

−, ψ1(x)).

Since (Λ1u
+ − (b(x) + Λ1)u

− ≤ −ϵ|u|, we have

−s ≥ ϵ

∫
Ω

|u|ψ1(x) ≥ ϵ|
∫
Ω

uψ1(x)|.
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Thus if u is a solution of (1.1), we have

|(u, ψ1(x))| ≤
1

ϵ
(−s),(2.3)

where s ≤ 0. We argue by contradiction. Suppose that there exists a
sequence (un, sn) such that sn ≤ 0, sn is bounded, ∥un∥ → ∞ and un
satisfy the equations

(∆2 + c∆− b(x)− Λ1)un = −Λ1u
+
n + (b(x) + Λ1)u

−
n + snψ1(x).

Let vn = un

∥un∥ . By the compactness of vn, there exists v such that vn → v.

v satisfies ∥v∥ = 1 and

(∆2 + c∆− b(x)− Λ1)v + Λ1v
+ − (b(x) + Λ1)v

− = 0.(2.4)

Since, from (1.1), we have

(∆2 + c∆)vn = b(x)v+n + sn
ψ1(x)

∥un∥
,

(2.3) with un instead of u and the boundedness of sn implies that

|(vn, ψ1(x))| ≤
1

ϵ∥un∥
(−sn) → 0 as n→ ∞.

So we have that |(v, ψ1(x))| = 0. By (2.4), we obtain∫
Ω

(−Λ1v
+ + (b(x) + Λ1)v

−)ψ1(x) = 0.(2.5)

Since −Λ1v
+ + (b(x) + Λ1)v

− ≥ ϵ|v| and ψ1(x) > 0, the only possibility
to hold (2.5) is that v = 0, which is impossible, since ∥v∥ = 1. Thus we
prove the lemma.

3. Main result

We have the main result of this paper.

Theorem 3.1. Let c < λ1 and λn(λn − c) < b(x) < λn+1(λn+1 − c),
n ≥ 1. Then there exists s0 < 0 such that for any s with 0 < s ≤ s0 if n
is even then (1.1) has at least three solutions, one of which is a positive
solution, and if n is odd then (1.1) has at least two solutions, one of
which is a positive solution.

Throughout this section we assume that c < λ1, λn(λn − c) < b(x) <
λn+1(λn+1 − c), n ≥ 1.
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Lemma 3.1. Assume that c < λ1 and λn(λn−c) < b(x) < λn+1(λn+1−
c), n ≥ 1. Then there exist a constant R > 0 (depending on C which is
introduced in Lemma 2.3) and s0<0 such that the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), BR(0), 0) = 0

for R > C and s ≥ s0.

Proof. By Lemma 2.3, there exist a constant C and s0 < 0 such that
if u is a solution of (1.1) with s, s ≥ s0, then ∥u∥ ≤ C. Let us choose
R such that R > C. By Lemma 2.1, (1.1) has no solution when s > 0.
Let us choose s∗ > 0 such that (1.1) has no solution. Then the Leray-
Schauder degree dLS(u− (∆2 + c∆)−1(b(x)u+ + s∗ψ1(x)), BR(0), 0) = 0.
Since the Leray-Schauder degree is invariant under a homotopy, we have
that the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), BR(0), 0)

= dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)

+λ(s∗ − s)ψ1(x)), BR(0), 0)

= dLS(u− (u− (∆2 + c∆)−1(b(x)u+ + s∗ψ1(x)), BR(0), 0)

= 0,

where 0 ≤ λ ≤ 1 and 0 ≥ s ≥ s0. Thus we prove the lemma.

We note that u1 =
s
Λ1
ψ1(x) is a solution of (1.1) and positive under the

condition (c < λ1, λn(λn − c) < b(x) < λn+1(λn+1 − c)) or the condition
(λ1 < c < λ2, b(x) < λ1(λ1 − c)). We consider the linear problem

∆2u+ c∆u = sψ1(x), in Ω,(3.1)

u = 0, ∆u = 0, on ∂Ω.

This linear problem has a unique solution under the above each condi-
tion, respectively. We now calculate the Leray-Schauder degree of the
operator u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)) on the small neighborhood
of the positive solution y1 of (1.1).

Lemma 3.2. Assume that c < λ1 and λn(λn−c) < b(x) < λn+1(λn+1−
c), n ≥ 1. Then there exist s0 < 0 and a small number η > 0 such that
for any s with 0 ≥ s ≥ s0, the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), Bη(y1), 0) = (−1)n,

where y1 is the unique negative solution of (3.1).
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Proof. The linear problem (3.1) has a unique solution y1. For s < 0,
sψ1(x) < 0. Since c < λ1, by the standard strong the maximum principle
to w = ∆u and consequently to u, the unique solution y1 is negative. If u
is a nontrivial solution of (1.1) with u ≤ 0 on Ω̄, then b(x)u++ sψ1(x) <
0, so by the maximum principle as stated above, we derive that u < 0
in Ω. Moreover since b(x)u+ + sψ1(x)) ≥ sψ1(x)), by the maximum
principle, u ≥ y1. Let K be the closure of (∆2 + c∆− b(x))−(B̄), where
B̄ is the closed unit ball in L2(Ω). Let u be a solution of (1.1) which
is different from the positive solution u1 =

s
Λ1
ψ1(x) of (1.1). Since y1 is

negative, we can take η < max |u1(x)− y1(x)| such that the ball Bη(y1)
with center y1 and radius η does not contain u1. Let us write u = y1+ v
and ∥v∥ = η. Then v satisfies the equation

(∆2 + c∆− b(x))v = b(x)(y1 + v)− + b(x)y1(3.2)

= b(x)(y1 + v)+ − b(x)v

or

v = (∆2 + c∆− b(x))−1(b(x)(y1 + v)+ − b(x)v).(3.3)

Let us set β = max b(x). We can easily check that (y1 + v)+ < v+ ≤
∥v∥. It follows that

v ∈ 2βηK.(3.4)

It follows from (3.3) that

v + (∆2 + c∆− b(x))−1b(x)v(3.5)

= (∆2 + c∆− b(x))−1b(x)(y1 + v)+.

The function w = v
η
has the properties ∥w∥ = 1 and w ∈ 2βK. Since w

is in compact set and different from zero and since b(x) is not eigenvalue,
infw∥w + (∆2 + c∆− b(x))−1b(x)w∥ = a > 0. Thus we get the estimate
of the norm of the left hand side of (3.5)

∥v + (∆2 + c∆− b(x))−1b(x)v∥ ≥ aη.

By Lemma 1 of [3], there exists a modulus of continuity δ(t) with δ(t) →
0 as t→ 0 such that v ∈ K and y1 < 0 satisfies ∥(tv + y1)

+∥ ≤ tδ(t). It
follows from (3.4) that

∥(v + y1)
+∥ ≤ 2βηδ(2βη).
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keeping in mind that ∥(∆2 + c∆ − b(x))−1∥ = 1
|Λ1| , we get the estimate

of the norm of the right hand side of (3.5)

(∆2 + c∆− b(x))−1b(x)(y1 + v)+ ≤ β

|Λ1|
2βηδ(2βη).

We can choose η > 0 so small that the right hand side is < aη and
Bη(y1) ∩ {u1} = ∅. Thus for this value of η, there is no solution of (1.1)
of the form u = y1 + v with ∥v∥ = η. That is,

u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)) ̸= 0 on ∂Bη(y1).

We apply the similar argument to the equation

(∆2 + c∆− b(x))u(3.6)

= λb(x)u− + (λ− 1)b(x)y1 + sψ1(x) in H,

where 0 ≤ λ ≤ 1 and u is of the form u = y1 + v. Let u be a solution of
the form u = y1 + v with ∥v∥ = η. When λ = 1, (3.6) is equal to (1.1),
while for any λ the function v satisfies the equation

v = (∆2 + c∆− b(x))−1(λb(x)(y1 + v)+ − λb(x)v)(3.7)

or

v + (∆2 + c∆− b(x))−1λb(x)v(3.8)

= (∆2 + c∆− b(x))−1λb(x)(y1 + v)+.

If w is the function w = v
η
, then infw∥w+ (∆2 + c∆− b(x))−1λb(x)w∥ =

b > 0. Thus we get the estimate of the norm of the left hand side of
(3.8)

∥v + (∆2 + c∆− b(x))−1λb(x)v∥ ≥ bη.

On the other hand, from (3.8) we have

v ∈ 2βληK.

By a modulus of continuity δ(t), we get the estimate of the norm of right
hand side of (3.8)

∥(∆2 + c∆− b(x))−1λb(x)(y1 + v)+∥

≤ β

|Λ1|
2βληδ(2βλη) ≤ β

|Λ1|
2βληδ(2βλη).
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We can choose η so small that the right hand side of (3.8) is < bη and
Bη(y1) ∩ {u1} = ∅. Thus for this value of η there is no solution of (1.1)
of the form u = y1 + v with ∥v∥ = η. That is,

u−(∆2+c∆−b(x))−1(λb(x)u−+(λ−1)b(x)y1+sψ1(x)) ̸= 0 on ∂Bη(y1).

Since the Leray-Schauder degree is invariant under a homotopy, we have

(u− (∆2 + c∆− b(x))−1(λb(x)u− + (λ− 1)b(x)y1 + sψ1(x)), Bη(y1), 0)

= dLS(u− (∆2 + c∆− b(x))−1(−b(x)y1 + sψ1(x)), Bη(y1), 0)

= dLS(u− (∆2 + c∆)−1(b(x)u), Bη(0), 0)

Now we are trying to find the number of the negative eigenvalues of
the equation

u− (∆2 + c∆)−1(b(x)u) = σu.(3.9)

We note that u− (∆2+ c∆)−1(b(x)u) = σu is equivalent to the equation

(∆2 + c∆)u− rb(x)u = 0,where r =
1

1− σ

and σ < 0 corresponds to 0 < r < 1. We first consider the eigenvalue
problem

(∆2 + c∆)u− rλn(λn − c)
b(x)

λn(λn − c)
u = 0.

Since b(x)
λn(λn−c)

> 1, rk(λn(λn − c)) < λk(λk − c). Thus

rk <
λk(λk − c)

λn(λn − c)
.(3.10)

We next consider the eigenvalue problem

(∆2 + c∆)u− rλn+1(λn+1 − c)
b(x)

λn+1(λn+1 − c)
u = 0.

Since b(x)
λn+1(λn+1−c)

< 1, rk(λn+1(λn+1 − c)) > λk(λk − c). Thus

λk(λk − c)

λn+1(λn+1 − c)
< rk(3.11)

By (3.10) and (3.11),

λk(λk − c)

λn+1(λn+1 − c)
< rk <

λk(λk − c)

λn(λn − c)
.
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Thus there exist n number of rk, k = 1, 2, · · · , n in the area of 0 < rk < 1,
so there exist n number of negative eigenvalues σ of (3.9). Thus we have

dLS(u− (∆2 + c∆)−1(b(x)u), Bη(0), 0) = (−1)n,

so we prove the lemma.

Lemma 3.3. Assume that c < λ1 and λn(λn−c) < b(x) < λn+1(λn+1−
c), n ≥ 1. Then there exists a small number τ such that the Leray-
Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), Bτ (u1), 0) = 1,

where u1 is the positive solution of (1.1).

Proof. The function u1 = s
Λ1
ψ1(x) is a positive solution. Since the

solutions of (1.1) is discrete, we can choose a small number τ > 0 such
that Bτ (u1) does not contain the other solutions of (1.1) except u1. Let
u ∈ Bτ (u1). Then u can be written as u = u1 + w, ∥w∥ < τ . Then the
Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), Bτ (u1), 0)

= dLS(u− u1, Bτ (u1), 0)

= dLS(u,Bτ (0), 0)

= 1

because (∆2 + c∆)u = b(x)u+ + sψ1(x) has only one solution u = u1 in
Bτ (u1).

Proof of Theorem 3.1. By Lemma 3.1, there exists a large number
R > 0 (depending on C) and s0 < 0 such that the Leray-Schauder
degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), BR(0), 0) = 0

for R > C and s ≥ s0. By Lemma 3.2, there exist s0 < 0 and a small
number η > 0 such that for 0 > s ≥ s0, the Leray-Schauder degree

dLS(u− (∆2 + c∆− b(x))−1(b(x)u− + sψ1(x)), Bη(y1), 0) = (−1)n,

where y1 is a solution of (3.1). By Lemma 3.3, there exists a small
number τ such that the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), Bτ (u1), 0) = 1,

where u1 is the positive solution of (1.1). If n is even, then the Leray-
Schauder degree in the region BR(0)\{Bη(y1) ∪ Bτ (u1)} is -2, so there
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exists the third solution in the region BR(0)\{Bη(y1)∪Bτ (u1)} of (1.1).
Therefore there exist at least three solutions of (1.1), one of which is
a positive solution. If n is odd, then the Leray-Schauder degree in the
region BR(0)\{Bη(y1)∪Bτ (u1)} is 0, so there is no solution in the region
BR(0)\{Bη(y1) ∪ Bτ (u1)} of (1.1). Therefore there exist at least two
solutions of (1.1), one of which is a positive solution. Thus we complete
the proof.
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