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QUADRATIC MAPPINGS ASSOCIATED WITH INNER

PRODUCT SPACES

Sung Jin Lee

Abstract. In [7], Th.M. Rassias proved that the norm defined over
a real vector space V is induced by an inner product if and only if
for a fixed integer n ≥ 2
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holds for all x1, · · · , xn ∈ V .
Let V,W be real vector spaces. It is shown that if an even map-

ping f : V → W satisfies
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for all x1, · · · , x2n ∈ V , then the even mapping f : V → W is
quadratic.

Furthermore, we prove the generalized Hyers-Ulam stability of
the quadratic functional equation (0.1) in Banach spaces.

1. Introduction

The stability problem of functional equations was originated from a
question of Ulam [15] concerning the stability of group homomorphisms.
Hyers [5] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for
additive mappings and by Th.M. Rassias [6] for linear mappings by con-
sidering an unbounded Cauchy difference. The paper of Th.M. Rassias
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[6] has provided a lot of influence in the development of what we call gen-
eralized Hyers-Ulam stability of functional equations. A generalization
of the Th.M. Rassias theorem was obtained by Găvruta [4] by replacing
the unbounded Cauchy difference by a general control function in the
spirit of Th.M. Rassias’ approach.

A square norm on an inner product space satisfies the important
parallelogram equality

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.
The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution
of the quadratic functional equation is said to be a quadratic mapping.
A generalized Hyers-Ulam stability problem for the quadratic functional
equation was proved by Skof [14] for mappings f : X → Y , where X
is a normed space and Y is a Banach space. Cholewa [2] noticed that
the theorem of Skof is still true if the relevant domain X is replaced
by an Abelian group. In [3], Czerwik proved the generalized Hyers-
Ulam stability of the quadratic functional equation. Several functional
equations have been investigated in [8]–[13].

Throughout this paper, assume that n is a fixed positive integer. Let
X be a real normed vector space with norm || · ||, and Y a real Banach
space with norm ∥ · ∥.

In this paper, we investigate the quadratic functional equation (0.1),
and prove the generalized Hyers-Ulam stability of the quadratic func-
tional equation (0.1) in Banach spaces.

2. Quadratic mappings associated with inner product spaces

We investigate the quadratic functional equation (0.1).

Lemma 2.1. Let V and W be real vector spaces. If an even mapping
f : V → W satisfies
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(2.1)

for all x1, · · · , x2n ∈ V , then the mapping f : V → W is quadratic, i.e.,

f(x+ y) + f(x− y) = 2f(x) + 2f(y)
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for all x, y ∈ V .

Proof. Assume that f : V → W satisfies (2.1).
Letting x1 = · · · = xn = x, xn+1 = · · · = x2n = y in (2.1), we get
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for all x, y ∈ V . Since f : V → W is even,
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for all x, y ∈ V . Letting x = y = 0 in (2.2), we get f(0) = 0. Letting
y = 0 in (2.2), we get f(x

2
) = 1

4
f(x) for all x ∈ V . It follows from (2.2)

that

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ V .

Corollary 2.2. Let V and W be real vector spaces. An even map-
ping f : V → W satisfies

f
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)
for all x, y ∈ V if and only if the mapping f : V → W is quadratic.

Proof. By Lemma 2.1, it is enough to show that if f : V → W is
quadratic, then f : V → W satisfies (2.3).

Assume that f : V → W is quadratic. Since f(2x) = 4f(x) for all
x ∈ V , f(x
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for all x, y ∈ V . Thus
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For a given mapping f : X → Y , we define
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for all x1, · · · , x2n ∈ X.

Now we prove the generalized Hyers-Ulam stability of the quadratic
functional equation Df(x1, · · · , x2n) = 0 in real Banach spaces.

Theorem 2.3. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function φ : X2n → [0,∞) such that
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for all x1, · · · , x2n ∈ X. Then there exists a unique quadratic mapping
Q : X → Y satisfying (2.1) such that
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for all x ∈ X. Replacing x by −x in (2.7), we get∥∥∥∥3nf (−x
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for all nonnegative integers m and l with m > l and all x ∈ X. It
follows from (2.4) and (2.10) that the sequence {4kg( x

2k
)} is Cauchy for

all x ∈ X. Since Y is complete, the sequence {4kg( x
2k
)} converges. So

one can define the mapping Q : X → Y by
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)
for all x ∈ X.



82 Sung Jin Lee

By (2.4) and (2.5),
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for all x1, · · · , x2n ∈ X. So DQ(x1, · · · , x2n) = 0. By Lemma 2.1, the
mapping Q : X → Y is quadratic. Moreover, letting l = 0 and passing
the limit m → ∞ in (2.10), we get (2.6). So there exists a quadratic
mapping Q : X → Y satisfying (2.1) and (2.6).

Now, let Q′ : X → Y be another quadratic mapping satisfying (2.1)
and (2.6). Then we have
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which tends to zero as q → ∞ for all x ∈ X. So we can conclude that
Q(x) = Q′(x) for all x ∈ X. This proves the uniqueness of Q.

Corollary 2.4. Let p > 2 and θ be positive real numbers, and let
f : X → Y be a mapping such that

∥Df(x1, · · · , x2n)∥ ≤ θ
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Q : X → Y satisfying (2.1) such that
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Proof. Define φ(x1, · · · , x2n) = θ
∑2n

j=1 ||xj||p, and apply Theorem 2.3
to get the desired result.
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Corollary 2.5. Let f : X → Y be an even mapping satisfying
f(0) = 0 for which there exists a function φ : X2n → [0,∞) satisfying
(2.4) and (2.5). Then there exists a unique quadratic mapping Q : X →
Y satisfying (2.1) such that
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for all x ∈ X, where φ̃ is defined in (2.4).

Theorem 2.6. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function φ : X2n → [0,∞) satisfying (2.5) such that
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Proof. It follows from (2.9) that∥∥∥∥g(x)− 1
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+
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.12) and (2.14) that the sequence { 1

4k
g(2kx)} is Cauchy for all
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x ∈ X. Since Y is complete, the sequence { 1
4k
g(2kx)} converges. So one

can define the mapping Q : X → Y by

Q(x) := lim
k→∞

1

4k
g(2kx)

for all x ∈ X.

By (2.5) and (2.12),

∥DQ(x1, · · · , x2n)∥ = lim
k→∞

1

4k
∥Dg(2kx1, · · · , 2kx2n)∥

≤ lim
k→∞

1

4k
(φ(2kx1, · · · , 2kx2n) + φ(−2kx1, · · · ,−2kx2n)) = 0

for all x1, · · · , x2n ∈ X. So DQ(x1, · · · , x2n) = 0. By Lemma 2.1, the
mapping Q : X → Y is quadratic. Moreover, letting l = 0 and passing
the limit m → ∞ in (2.14), we get (2.13). So there exists a quadratic
mapping Q : X → Y satisfying (2.1) and (2.13).

The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 2.7. Let p < 2 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying (2.11). Then there exists a unique
quadratic mapping Q : X → Y satisfying (2.1) such that

∥f(x) + f(−x)−Q(x)∥ ≤ 2p+1θ

4− 2p
||x||p

for all x ∈ X.

Proof. Define φ(x1, · · · , x2n) = θ
∑2n

j=1 ||xj||p, and apply Theorem 2.6
to get the desired result.

Corollary 2.8. Let f : X → Y be an even mapping satisfying
f(0) = 0 for which there exists a function φ : X2n → [0,∞) satisfying
(2.5) and (2.12). Then there exists a unique quadratic mapping Q :
X → Y satisfying (2.1) such that

∥f(x)−Q(x)∥ ≤ 1

n
φ̃(x, · · · , x︸ ︷︷ ︸

n times

, 0, · · · , 0︸ ︷︷ ︸
n times

)

for all x ∈ X, where φ̃ is defined in (2.12).
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