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HOMOMORPHISMS IN PROPER LIE CQ∗-ALGEBRAS

Jung Rye Lee∗ and Dong Yun Shin

Abstract. Using the Hyers-Ulam-Rassias stability method of func-
tional equations, we investigate homomorphisms in proper CQ∗-
algebras and proper Lie CQ∗-algebras, and derivations on proper
CQ∗-algebras and proper Lie CQ∗-algebras associated with the fol-
lowing functional equation

1

k
f(kx+ ky + kz) = f(x) + f(y) + f(z)

for a fixed positive integer k.

1. Introduction and preliminaries

Ulam [46] gave a talk before the Mathematics Club of the Univer-
sity of Wisconsin in which he discussed a number of unsolved problems.
Among these was the following question concerning the stability of ho-
momorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·).
Given ϵ > 0, does there exist a δ > 0 such that if f : G → G′ satisfies
ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then a homomorphism h : G →
G′ exists with ρ(f(x), h(x)) < ϵ for all x ∈ G?

By now an affirmative answer has been given in several cases, and
some interesting variations of the problem have also been investigated.
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Hyers [18] considered the case of approximately additive mappings
f : E → E ′, where E and E ′ are Banach spaces and f satisfies Hyers
inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and that L : E → E ′ is the unique additive mapping
satisfying

∥f(x)− L(x)∥ ≤ ϵ.

Th.M. Rassias [34] provided a generalization of Hyers’ Theorem which
allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : E → E ′ be a mapping from
a normed vector space E into a Banach space E ′ subject to the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ θ(∥x∥p + ∥y∥p)(1.1)

for all x, y ∈ E, where θ and p are positive real numbers with p < 1.
Then the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E ′ is the unique additive mapping
which satisfies

∥f(x)− L(x)∥ ≤ 2θ

2− 2p
∥x∥p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in
t ∈ R, then L is R-linear.

Th.M. Rassias [35] during the 27th International Symposium on Func-
tional Equations asked the question whether such a theorem can also be
proved for p ≥ 1. Gajda [14] following the same approach as in Th.M.
Rassias [34], gave an affirmative solution to this question for p > 1. It
was shown by Gajda [14], as well as by Th.M. Rassias and Šemrl [40]
that one cannot prove a Th.M. Rassias’ type theorem when p = 1. The
counterexamples of Gajda [14], as well as of Th.M. Rassias and Šemrl
[40] have stimulated several mathematicians to invent new definitions of
approximately additive or approximately linear mappings, cf. P. Găvruta
[15], who among others studied the Hyers-Ulam stability of functional
equations. The inequality (1.1) that was introduced for the first time by
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Th.M. Rassias [34] provided a lot of influence in the development of a
generalization of the Hyers-Ulam stability concept. This new concept is
known as Hyers-Ulam-Rassias stability of functional equations (cf. the
books of P. Czerwik [10, 11], D.H. Hyers, G. Isac and Th.M. Rassias
[19]).

Beginning around the year 1980, the topic of approximate homomor-
phisms and their stability theory in the field of functional equations and
inequalities was taken up by several mathematicians (cf. D.H. Hyers and
Th.M. Rassias [20], Th.M. Rassias [38] and the references therein).

J.M. Rassias [32] following the spirit of the innovative approach of
Th.M. Rassias [34] for the unbounded Cauchy difference proved a similar
stability theorem in which he replaced the factor ∥x∥p+∥y∥p by ∥x∥p·∥y∥q
for p, q ∈ R with p + q ̸= 1 (see also [33] for a number of other new
results).

Theorem 1.2. [31, 32, 33] Let X be a real normed linear space and
Y a real complete normed linear space. Assume that f : X → Y is an
approximately additive mapping for which there exist constants θ ≥ 0
and p ∈ R −{1} such that f satisfies inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ θ · ||x||
p
2 · ||y||

p
2

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y
satisfying

∥f(x)− L(x)∥ ≤ θ

|2p − 2|
||x||p

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the
transformation t → f(tx) is continuous in t ∈ R for each fixed x ∈ X,
then L is an R-linear mapping.

Several mathematicians have contributed works on these subjects (see
[22]–[28], [36]–[39], [42]).

In a series of papers [1]–[13] and [43]–[45], many authors have con-
sidered a special class of quasi ∗-algebras, called proper CQ∗-algebras,
which arise as completions of C∗-algebras. They can be introduced in
the following way:

Let A be a Banach module over the C∗-algebra A0 with involution ∗
and C∗-norm ∥ · ∥0 such that A0 ⊂ A. We say that (A,A0) is a proper
CQ∗-algebra if

(i) A0 is dense in A with respect to its norm ∥ · ∥;
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(ii) an involution ∗, which extends the involution of A0, is defined
in A with the property (xy)∗ = y∗x∗ for all x, y ∈ A whenever the
multiplication is defined. ;

(iii) ∥y∥0 = supx∈A,∥x∥≤1 ∥xy∥ for all y ∈ A0.

Definition 1.3. Let (A,A0) and (B,B0) be proper CQ∗-algebras.
(i) A C-linear mapping H : A → B is called a proper CQ∗-algebra

homomorphism if H(z) ∈ B0 and H(zx) = H(z)H(x) for all z ∈ A0 and
all x ∈ A.

(ii) A C-linear mapping δ : A0 → A is called a derivation if δ(xy) =
δ(x)y + xδ(y) for all x, y ∈ A0 (see [3]).

A C∗-algebra C, endowed with the Lie product [x, y] := xy−yx
2

on C,
is called a Lie C∗-algebra. (see [22], [24], [30]).

Definition 1.4. A proper CQ∗-algebra (A,A0), endowed with the
Lie product [z, x] := zx−xz

2
for all z ∈ A0 and all x ∈ A, is called a proper

Lie CQ∗-algebra.

Definition 1.5. Let (A,A0) and (B,B0) be proper Lie CQ∗-algebras.
(i) A C-linear mapping H : A → B is called a proper Lie CQ∗-algebra

homomorphism if H(z) ∈ B0 and H([z, x]) = [H(z), H(x)] for all z ∈ A0

and all x ∈ A.
(ii) A C-linear mapping δ : A0 → A is called a Lie derivation if

δ([x, y]) = [x, δ(y)] + [δ(x), y] for all x, y ∈ A0.

In [16], Gilányi showed that if f satisfies the functional inequality

∥2f(x) + 2f(y)− f(x− y)∥ ≤ ∥f(x+ y)∥(1.2)

then f satisfies the Jordan-von Neumann functional inequality

2f(x) + 2f(y) = f(x+ y) + f(x− y).

See also [41]. Fechner [12] and Gilányi [17] proved the generalized Hyers–
Ulam stability of the functional inequality (1.2). Park, Cho and Han [29]
proved the generalized Hyers–Ulam stability of functional inequalities
associated with Jordan-von Neumann type additive functional equations.

This paper is organized as follows: In Section 2, we investigate ho-
momorphisms in proper CQ∗-algebras associated with the functional
equation

1

k
f(kx+ ky + kz) = f(x) + f(y) + f(z).(1.3)
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In Section 3, we investigate derivations on proper CQ∗-algebras asso-
ciated with the functional equation (1.3).

In Section 4, we investigate homomorphisms in proper Lie CQ∗-
algebras associated with the functional equation (1.3).

In Section 5, we investigate derivations on proper Lie CQ∗-algebras
associated with the functional equation (1.3).

2. Homomorphisms in proper CQ∗-algebras

Throughout this section, assume that (A,A0) is a proper CQ∗-algebra
with C∗-norm ∥ · ∥A0 and norm ∥ · ∥A, and that (B,B0) is a proper CQ∗-
algebra with C∗-norm ∥ · ∥B0 and norm ∥ · ∥B.

Proposition 2.1. Let X and Y be normed spaces with norms ∥ · ∥X
and ∥ · ∥Y , respectively. Let f : X → Y be a mapping such that

∥f(x) + f(y) + f(z)∥Y ≤ ∥1
k
f(kx+ ky + kz)∥Y(2.1)

for all x, y, z ∈ X. Then f is Cauchy additive, i.e., f(x+y) = f(x)+f(y).

Proof. Letting x = y = z = 0 in (2.1), we get

∥3f(0)∥Y ≤ ∥1
k
f(0)∥Y .

So f(0) = 0.
Letting z = 0 and y = −x in (2.1), we get

∥f(x) + f(−x)∥Y ≤ ∥1
k
f(0)∥Y = 0

for all x ∈ X. Hence f(−x) = −f(x) for all x ∈ X.
Letting z = −x− y in (2.1), we get

∥f(x) + f(y)− f(x+ y)∥Y = ∥f(x) + f(y) + f(−x− y)∥Y

≤ ∥1
k
f(0)∥Y = 0

for all x, y ∈ X. Thus

f(x+ y) = f(x) + f(y)

for all x, y ∈ X, as desired.

We investigate homomorphisms in proper CQ∗-algebras associated
with the functional equation (1.3).
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Theorem 2.2. Let r ̸= 1 and θ be nonnegative real numbers, and
f : A → B a mapping satisfying f(w) ∈ B0 for all w ∈ A0 such that

∥µf(x) + f(y) + f(z)∥B ≤ ∥1
k
f(kµx+ ky + kz)∥B,(2.2)

∥f(wx)− f(w)f(x)∥B ≤ θ(∥w∥2rA + ∥x∥2rA )(2.3)

for µ ∈ T1 := {λ ∈C: |λ| = 1}, all w ∈ A0 and all x, y, z ∈ A. Then the
mapping f : A → B is a proper CQ∗-algebra homomorphism.

Proof. Let µ = 1 in (2.2). By Proposition 2.1, the mapping f : A → B
is Cauchy additive.

Letting z = 0 and y = −µx in (2.2), we get

µf(x)− f(µx) = µf(x) + f(−µx) = 0

for all x ∈ A. So f(µx) = µf(x) for all x ∈ A. By the same reasoning as
in the proof of Theorem 2.1 of [23], the mapping f : A → B is C-linear.

(i) Assume that r < 1. By (2.3),

∥f(wx)− f(w)f(x)∥B = lim
n→∞

1

4n
∥f(4nwx)− f(2nw)f(2nx)∥B

≤ lim
n→∞

4nr

4n
θ(∥w∥2rA + ∥x∥2rA ) = 0

for all w ∈ A0 and all x ∈ A. So

f(wx) = f(w)f(x)

for all w ∈ A0 and all x ∈ A.
(ii) Assume that r > 1. By a similar method to the proof of the case

(i), one can prove that the mapping f : A → B satisfies

f(wx) = f(w)f(x)

for all w ∈ A0 and all x ∈ A.
Since f(w) ∈ B0 for all w ∈ A0, the mapping f : A → B is a proper

CQ∗-algebra homomorphism, as desired.

Theorem 2.3. Let r ̸= 1 and θ be nonnegative real numbers, and
f : A → B a mapping satisfying (2.2) and f(w) ∈ B0 for all w ∈ A0

such that

∥f(wx)− f(w)f(x)∥B ≤ θ · ∥w∥rA · ∥x∥rA(2.4)

for all w ∈ A0 and all x ∈ A. Then the mapping f : A → B is a proper
CQ∗-algebra homomorphism.
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Proof. By the same reasoning as in the proof of Theorem 2.2, the
mapping f : A → B is C-linear.

(i) Assume that r < 1. By (2.4),

∥f(wx)− f(w)f(x)∥B = lim
n→∞

1

4n
∥f(4nwx)− f(2nw)f(2nx)∥B

≤ lim
n→∞

4nr

4n
θ · ∥w∥rA · ∥x∥rA = 0

for all w ∈ A0 and all x ∈ A. So

f(wx) = f(w)f(x)

for all w ∈ A0 and all x ∈ A.
(ii) Assume that r > 1. By a similar method to the proof of the case

(i), one can prove that the mapping f : A → B satisfies

f(wx) = f(w)f(x)

for all w ∈ A0 and all x ∈ A.
The rest of the proof is similar to the proof of Theorem 2.2.

3. Derivations on proper CQ∗-algebras

Throughout this section, assume that (A,A0) is a proper CQ∗-algebra
with C∗-norm ∥ · ∥A0 and norm ∥ · ∥A.

We investigate derivations on proper CQ∗-algebras associated with
the functional equation (1.3).

Theorem 3.1. Let r ̸= 1 and θ be nonnegative real numbers, and
f : A → A a mapping such that

∥f(µx) + f(y) + f(z)∥A ≤ ∥1
k
f(kµx+ ky + kz)∥A,(3.1)

∥f(w0w1)− f(w0)w1 − w0f(w1)∥A ≤ θ(∥w0∥2rA + ∥w1∥2rA )(3.2)

for µ ∈ T1, all w0, w1 ∈ A0 and all x, y, z ∈ A. Then the mapping
f : A → A is a derivation on A.

Proof. By the same reasoning as in the proof of Theorem 2.2, the
mapping f : A → A is C-linear.
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(i) Assume that r < 1. By (3.2),

∥f(w0w1) − f(w0)w1 − w0f(w1)∥A

= lim
n→∞

1

4n
∥f(4nw0w1)− f(2nw0) · 2nw1 − 2nw0f(2

nw1)∥A

≤ lim
n→∞

4nr

4n
θ(∥w0∥2rA + ∥w1∥2rA ) = 0

for all w0, w1 ∈ A0. So

f(w0w1) = f(w0)w1 + w0f(w1)

for all w0, w1 ∈ A0.
(ii) Assume that r > 1. By a similar method to the proof of the case

(i), one can prove that the mapping f : A → A satisfies

f(w0w1) = f(w0)w1 + w0f(w1)

for all w0, w1 ∈ A0.
Therefore, the mapping f : A → A is a derivation on A, as desired.

Theorem 3.2. Let r ̸= 1 and θ be nonnegative real numbers, and
f : A → A a mapping satisfying (3.1) such that

∥f(w0w1)− f(w0)w1 − w0f(w1)∥A ≤ θ · ∥w0∥rA · ∥w1∥rA(3.3)

for all w0, w1 ∈ A0. Then the mapping f : A → A is a derivation on A.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.1.

4. Homomorphisms in proper Lie CQ∗-algebras

Throughout this section, assume that (A,A0) is a proper Lie CQ∗-
algebra with C∗-norm ∥ · ∥A0 and norm ∥ · ∥A, and that (B,B0) is a
proper Lie CQ∗-algebra with C∗-norm ∥ · ∥B0 and norm ∥ · ∥B.

We investigate homomorphisms in proper Lie CQ∗-algebras associ-
ated with the functional equation (1.3).

Theorem 4.1. Let r ̸= 1 and θ be nonnegative real numbers, and
f : A → B a mapping satisfying (2.2) and f(w) ∈ B0 for all w ∈ A0

such that

∥f([w, x])− [f(w), f(x)]∥B ≤ θ(∥w∥2rA + ∥x∥2rA )(4.1)

for all w ∈ A0 and all x ∈ A. Then the mapping f : A → B is a proper
Lie CQ∗-algebra homomorphism.
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Proof. By the same reasoning as in the proof of Theorem 2.2, the
mapping f : A → B is C-linear.

(i) Assume that r < 1. By (4.1),

∥f([w, x])− [f(w), f(x)]∥B = lim
n→∞

1

4n
∥f(4n[w, x])− [f(2nw), f(2nx)]∥B

≤ lim
n→∞

4nr

4n
θ(∥w∥2rA + ∥x∥2rA ) = 0

for all w ∈ A0 and all x ∈ A. So

f([w, x]) = [f(w), f(x)]

for all w ∈ A0 and all x ∈ A.
(ii) Assume that r > 1. By a similar method to the proof of the case

(i), one can prove that the mapping f : A → B satisfies

f([w, x]) = [f(w), f(x)]

for all w ∈ A0 and all x ∈ A.
Therefore, the mapping f : A → B is a proper Lie CQ∗-algebra

homomorphism.

Theorem 4.2. Let r ̸= 1 and θ be nonnegative real numbers, and
f : A → B a mapping satisfying (2.2) and f(w) ∈ B0 for all w ∈ A0

such that

∥f([w, x])− [f(w), f(x)]∥B ≤ θ · ∥w∥rA · ∥x∥rA(4.2)

for all w ∈ A0 and all x ∈ A. Then the mapping f : A → B is a proper
Lie CQ∗-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the
mapping f : A → B is C-linear.

(i) Assume that r < 1. By (4.2),

∥f([w, x])− [f(w), f(x)]∥B = lim
n→∞

1

4n
∥f(4n[w, x])− [f(2nw), f(2nx)]∥B

≤ lim
n→∞

4nr

4n
θ · ∥w∥rA · ∥x∥rA = 0

for all w ∈ A0 and all x ∈ A. So

f([w, x]) = [f(w), f(x)]

for all w ∈ A0 and all x ∈ A.
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(ii) Assume that r > 1. By a similar method to the proof of the case
(i), one can prove that the mapping f : A → B satisfies

f([w, x]) = [f(w), f(x)]

for all w ∈ A0 and all x ∈ A.
Therefore, the mapping f : A → B is a proper Lie CQ∗-algebra

homomorphism.

Remark 4.3. If the Lie products [·, ·] in the statements of Theorems
4.1 and 4.2 are replaced by the Jordan products · ◦ ·, then one obtains
proper Jordan CQ∗-algebra homomorphisms instead of proper Lie CQ∗-
algebra homomorphisms.

5. Derivations on proper Lie CQ∗-algebras

Throughout this section, assume that (A,A0) is a proper Lie CQ∗-
algebra with C∗-norm ∥ · ∥A0 and norm ∥ · ∥A.

We investigate derivations on proper Lie CQ∗-algebras associated
with the functional equation (1.3).

Theorem 5.1. Let r ̸= 1 and θ be nonnegative real numbers, and
f : A → A a mapping satisfying (3.1) such that

∥f([w0, w1])− [f(w0), w1] − [w0, f(w1)]∥A(5.1)

≤ θ(∥w0∥2rA + ∥w1∥2rA )

for all w0, w1 ∈ A0. Then the mapping f : A → A is a Lie derivation on
A.

Proof. By the same reasoning as in the proof of Theorem 2.2, the
mapping f : A → A is C-linear.

(i) Assume that r < 1. By (5.1),

∥f([w0, w1])− [f(w0), w1]− [w0, f(w1)]∥A

= lim
n→∞

1

4n
∥f(4n[w0, w1])− [f(2nw0), 2

nw1]− [2nw0, f(2
nw1)]∥A

≤ lim
n→∞

4nr

4n
θ(∥w0∥2rA + ∥w1∥2rA ) = 0

for all w0, w1 ∈ A0. So

f([w0, w1]) = [f(w0), w1] + [w0, f(w1)]

for all w0, w1 ∈ A0.
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(ii) Assume that r > 1. By a similar method to the proof of the case
(i), one can prove that the mapping f : A → A satisfies

f([w0, w1]) = [f(w0), w1] + [w0, f(w1)]

for all w0, w1 ∈ A0.
Therefore, the mapping f : A → A is a Lie derivation on A, as

desired.

Theorem 5.2. Let r ̸= 1 and θ be nonnegative real numbers, and
f : A → A a mapping satisfying (3.1) such that

∥f([w0, w1])− [f(w0), w1]− [w0, f(w1)]∥A(5.2)

≤ θ · ∥w0∥rA · ∥w1∥rA
for all w0, w1 ∈ A0. Then the mapping f : A → A is a Lie derivation on
A.

Proof. The proof is similar to the proofs of Theorems 2.2 and 5.1.

Remark 5.3. If the Lie products [·, ·] in the statements of Theorems
5.1 and 5.2 are replaced by the Jordan products · ◦ ·, then one obtains
Jordan derivations instead of Lie derivations.
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