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TOPOLOGICAL APPROACH FOR THE MULTIPLE

SOLUTIONS OF THE NONLINEAR PARABOLIC

PROBLEM WITH VARIABLE COEFFICIENT JUMPING

NONLINEARITY

Tacksun Jung and Q-Heung Choi∗

Abstract. We get a theorem which shows that there exist at least
two or three nontrivial weak solutions for the nonlinear parabolic
boundary value problem with the variable coefficient jumping non-
linearity. We prove this theorem by restricting ourselves to the real
Hilbert space. We obtain this result by approaching the topologi-
cal method. We use the Leray-Schauder degree theory on the real
Hilbert space.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let
a(x) and b(x) be Hölder continuous in Ω and let λk, ϕk (k = 1, 1, 3, . . .)
be the eigenvalues and the corresponding eigenfunctions of the eigenvalue
problem

∆u+ λu = 0 in Ω,

u = 0 on ∂Ω.

We assume that the eigenfunctions ϕi are an orthonormal basis for L2(Ω).
We note that

λ1 < λ2 ≤ λ3 ≤ · · · , λk → +∞ as k → +∞,
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ϕ1(x) > 0 in Ω.

Let νk, ψk (k = 1, 1, 3, . . .) be the eigenvalues and the corresponding
eigenfunctions of the eigenvalue problem

(∆ + b(x))u+ νu = 0 in Ω,

u = 0 on ∂Ω.

Standard eigenvalue theory gives that

ν1 < ν2 ≤ ν3 ≤ · · · , νk → +∞ as k → +∞,

ψ1(x) > 0 in Ω.

In this paper we investigate the number of the weak solutions for the
following parabolic equation with the variable coefficient jumping non-
linearity and Dirichlet boundary condition

ut −∆u = b(x)u+ − a(x)u− − sψ1 − h(x, t)(1.1)

in Ω× (0, 2π),

u = 0 on ∂Ω× (0, 2π).

We assume that the function h(x, t) is 2π periodic in t and in the
space L∗

2(Ω× (0, 2π)). The physical model for this kind of the jumping
nonlinearity problem can be furnished by travelling waves in suspen-
sion bridges. The nonlinear equations with jumping nonlinearity have
been extensively studied by McKenna and Walter [5], Tarantello [9],
Micheletti and Pistoia [7,8] and many the other authors[1,2]. Taran-
tello, Micheletti and Pistoia dealt with the biharmonic equations with
jumping nonlinearity and proved the existence of nontrivial solutions by
degree theory and critical points theory. Lazer and McKenna [4] dealt
with the one dimensional elliptic equation with jumping nonlinearity for
the existence of nontrivial solutions by the global bifurcation method.
For the multiplicity results of the solutions for the nonlinear parabolic
problem we refer to [3, 6].

The steady-state case of (1.1) is the elliptic problem

−∆u = b(x)u+ − a(x)u− − sψ1 − h(x, t)(1.2)

in Ω× (0, 2π),

u = 0 on ∂Ω× (0, 2π).

Our main result is as follows:
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Theorem 1.1. Assume that a(x) < λ1 < · · · < λn < b(x) < λn+1,
s > 0 and h(x, t) is 2π periodic in t and in the spaceH∗ = L2(Ω×(0, 2π)).
Then (1.1) has at least two weak solutions if n is odd and at least three
solutions if n is even.

For the proof of Theorem 1.1 we restrict ourselves to the real Hilbert
space and approach the topological method. We use the Leray-Schauder
degree theory on the real Hilbert space. The outline of this paper is
the following: In section 2 we introduce the Hilbert space H whose
elements are expressed by the square integrable Fourier series expansions
on Ω×(0, 2π) and consider the parabolic problem (1.1) on H and obtain
a priori bound for the weak solutions of (1.1). In section 3 we prove
Theorem 1.1.

2. A priori bound

We shall work with the complex Hilbert space H∗ = L2(Ω× (0, 2π)),
equipped with the usual inner product

⟨v, ω⟩∗ =
∫ 2π

0

∫
Ω

v(x, t)ω(x, t)dxdt

and norm ∥v∥ = ⟨v, v⟩∗ 1
2 . Later we shall switch to the real subspace H.

The functions ψmn = ψn(x)eimt
√
2π

, n ≥ 1,m = 0,±1,±2, . . . are a complete

orthonormal basis for H∗. Let Σ∗ denote sums over the indices m,n.
Every v ∈ H∗ has a Fourier expansion

v = Σ∗vmnψmn,

with Σ|vmn|2 = ∥v∥2, vmn = ⟨v, ψmn⟩∗. A weak solution to the bound-
ary value problem (1.1) is, by definition, a function u ∈ H satisfy-
ing Σ∗|umn|2(m2 + λ2n) < ∞. For real b(x) ̸= λn, the operator R =
(Dt −∆− b(x))−1 denoted by

u = Rh↔ umn =
hmn

λn − b(x) + im

is a compact linear operator on H∗ and the operator norm of R is ∥R∥ =
1

|b(x)−λn| .

From now on, we restrict ourselves to the real subspace H and observe
that it is invariant under R.

We have the a priori bound for the weak solutions of (1.1).
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Lemma 2.1. Assume that a(x) < λ1 < · · · < λn < b(x) < λn+1, s is
bounded and h(x, t) is 2π periodic in t and that h ∈ H satisfies ∥h∥ ≤ r.
Then there exist C and s∗such that

Dtu = ∆u+ b(x)u+ − a(x)u− − sϕ1 − h

u(x, t+ 2π) = u(x, t)

satisfies ∥u∥ ≤ C for any s with s ≤ s∗

Proof. Suppose not. Then there exist (un, sn, hn) with ∥un∥ → ∞,
sn → s∗, s∗ is bounded and ∥un∥ ≤ r which satisfy the equation (1.1).
Now let vn = un

∥un∥ , and vn satisfies

Dtvn = ∆vn + (b(x)v+n − a(x)v−n )−
sψ1(x)

∥un∥
− hn(x, t)

∥un∥
(2.1)

Taking the inner product of both sides of (2.1) with ψ1, we have

⟨Dtvn −∆vn − ν1vn, ψ1⟩ = ⟨−ν1v+n + (ν1 + b(x)− a(x))v−n , ψ1⟩

−⟨snψ1(x) + hn
∥un∥

, ψ1⟩.(2.2)

The condition a(x) < λ1 < · · · < λn < b(x) < λn+1 implies that
−ν1 ≥ ϵ > 0 and ν1 + b(x)− a(x) ≥ ϵ > 0. Now we observe that

−ν1v+n + (ν1 + b(x)− a(x))v−n ≥ ϵ|vn|
and thus

| < snψ1(x) + hn
∥un∥

, ψ1 > | ≥ ϵ

∫
|vn|ψ1(x) ≥ ϵ|

∫
vnψ1(x)|.

Thus if vn is a solution of (2.1), then

| < vn, ψ1(x) > | ≤ 1

ϵ
| < snψ1(x) + hn

∥un∥
, ψ1(x) > |.(2.3)

Since vn’s are precompact in H, there exists v with ∥v∥ = 1 such that
vn → v. Taking the limit of both sides of (2.2), we have

| < v, ψ1(x) > | ≤ 0.

Thus we have
| < v, ψ1(x) > | = 0.

From (2.2), we have∫
(−ν1v+ + (ν1 + b(x)− a(x))v−)ψ1 = 0.
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Since ψ1 > 0 in Ω and −ν1v+ + (ν1 + b(x)− a(x))v− ≥ ϵ|v|, this implies
that v = 0. This is impossible, since ∥v∥ = 1.

3. Proof of Theorem 1.1

Lemma 3.1. Assume that a(x) < λ1 < · · · < λn < b(x) < λn+1 and
that h ∈ H is 2π periodic in t and that h ∈ H. Then there exists s1 > 0,
ϵ > 0 such that the Leray-Schauder degree

deg(u− (Dt −∆)−1(b(x)u+ − a(x)u− − sψ1 − h),(3.1)

B∗
sϵ(sθ), 0) = (−1)n

for s ≥ s1. Here B
∗
r denotes a ball of radius r in H and

θ = −(Dt −∆− b(x))−1ψ1 =
ψ1

−ν1
> 0.

Proof. Let A = (Dt −∆)−1 and R = (Dt −∆ − b(x))−1. Then (1.1)
is equivalent to

u = sθ −Rh+R((b(x)− a(x))u−) ≡ Su.(3.2)

Let B∗ be the open unit ball in H, let K = R(B∗). It follows that
any solution u ∈ sθ + s ∈ B∗, of (3.2) belongs to sθ + 3

4
sϵB∗ and this

holds when −h+(b(x)−a(x))u− is replaced by λ(−h+(b(x)−a(x))u−),
0 ≤ λ ≤ 1. We consider the problem

(Dt −∆− b(x))u = −sψ1 + λ(−h+ (b(x)− a(x))u−)

or

u = R(−sψ1 + λ(−h+ (b(x)− a(x)u−))).

Let G = B∗
sϵ(sθ). Since the degree is invariant under the homotopy, we

have

deg(u−R(−sψ1 − h+ (b(x)− a(x))u−, G, 0)

= deg(u−R(−sψ1 + λ(−h+ (b(x)− a(x))u−), G, 0)

= deg(u−R(−sψ1), G, 0)

= deg(u− sθ − (Dt −∆)(b(x)u), G, 0)

= deg(u− A(b(x)u), B∗
sϵ(0), 0), 0 ≤ λ ≤ 1
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Thus, to prove the lemma, we have to show that this degree is (−1)n.
To do this, we calculate the degree on finite dimensional subspaces which
we now choose. The functions

ϕon =
1√
2π
ϕn(x),

ϕcmn =
1√
π
ϕn(x) cosmt m = 1, 2, 3 . . . ,

ϕsmn =
1√
π
ϕn(x) sinmt

form a real orthonormal basis for H. If h ∈ H, then h = Σhmnϕmn in
H∗ and h can be expanded in terms of ϕon, h

c
mn, h

s
mn, with the identities

∥A− PA∥2 = Σ
1

λ2n +m2
(|hmn|2 + |h−m,n|2).

It follows that

∥A− PA∥2 ≤ min
m,n>b

1

λ2n +m2
≤ max

(
1

p+ 1
,

1

λp+1

)
and by the definition of degree

deg(u− PAb(x)u, sϵB∗(0), 0) = deg(u− Ab(x)u, sϵB∗(0), 0)

for large p, since the operator PA is of finite rank, with its range con-
tained in PH. Taking the functions ϕon, ϕ

c
mn, ϕ

s
mn, 1 ≤ m,n ≤ p, as a

basis Hp, the equation u + PAb(x)u becomes a matrix equation on the
space Hp, of the form

(Iq + b(x)C)x = 0 for x ∈ Rq , q = p(2p + 1 )

where Iq is the identity matrix of rank q, C is a q × q block diagonal
matrix C = diag(C1, · · · , Cp) and each Cn is a 2p + 1 by 2p + 1 block
diagonal matrix given by

Cn = diag

(
− 1

λn
, A1n, · · · , Apn

)
Now let D = Iq + b(x)C = diag(D1, · · · , Dn), where

Dn = diag

(
1− b(x)

λn
, I2 − b(x)A1n, · · · , I2 − b(x)Apn

)
.
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Since detDn =
(
1− b(x)

λn

)
a1n(x), · · · , apn(x) where det(I2− b(x)Amn) =

amn(x) > 0, we finally get for large p that

sign detD = sign

(
1− b(x)

λ1

)
· · ·

(
1− b(x)

λp

)
= (−1)n.

Recall that λn < b(x) < λn+ 1. Since sign detD is equal to deg(u +
PAb(x)u, sϵB∗(0), 0) for large p, the theorem is proved by letting p →
+∞.

Lemma 3.2. If a(x) < λ1 < · · · < λn < b(x) < λn+1 and that h ∈ H
is 2π periodic in t, then there exist positive constants s2, ϵ such that

deg(u− (Dt −∆)−1(b(x)u+ − a(x)u− − sϕ1 − h), B∗
sϵ(sθ), 0) = 1

for s ≥ s2, where θ =
ϕ1

a(x)−λ1 < 0.

The proof of this lemma is similar to the proof of Lemma 3.1.
We have the following no solvability condition for (1.1).

Lemma 3.3. Assume that a(x) < λ1 < · · · < λn < b(x) < λn+1, s > 0
and h(x, t) is 2π periodic in t and that h ∈ H satisfies ∥h∥ ≤ r. Then
there exists a constant s0 < 0 so small enough that if s ≤ s0, then the
problem

ut −∆u = b(x)u+ − a(x)u− − sψ1 − h(x, t) in Ω× (0, 2π),

u = 0 on ∂Ω× (0, 2π).

has no solution.

Proof. We can rewrite (1.1) as

(Dt−∆u− b(x)−ν1)u = −ν1u++(ν1+ b(x)−a(x))u−−sψ1−h, (3.3)
u = 0 on ∂Ω.

Taking the inner product of both sides of (3.3) with ψ1(x), we have

0 =< −ν1u+ + (ν1 + b(x)− a(x))u− − sψ1 − h, ψ1 >≥ −s− r

since −ν1 and ν1 + b(x) − a(x) are positive. If s < −r, (1.1) has no
solution. Thus we complete the proof.

Lemma 3.4. Let a(x) < λ1 < · · · < λn < b(x) < λn+1 and that h ∈ H
is 2π periodic in t, there exists β > 0, depending on C and s∗ such that

deg(u− (Dt −∆u)−1(b(x)u+ − a(x)u− − (h(x, t) + sψ1)), B
∗
β(0), 0) = 0

for s ≤ s∗ and β > C.
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Proof. By Lemma 3.3, there exists a constant s0 < 0 such that if
s ≤ s0, (1.1) has no solution. By Lemma 2.1, there exist a constant C
and s∗ > 0 such that if u is a solution of (1.1) with s ≤ s∗, then ∥u∥ ≤ C.
Let us choose β so large that β > C. We note that

u− (Dt −∆u)−1(b(x)u+ − a(x)u− − (h(x, t) + sψ1)) ̸= 0 on ∂Bβ(0)

and

u− (Dt −∆u)−1(b(x)u+ − a(x)u− − (h(x, t) + s0ψ1)) + λ)(s∗ − s0)ψ1(x))

̸= 0 on ∂Bβ(0)

for 0 ≤ λ ≤ 1. By the homotopy invariance property, we have that the
Leray-Schauder degree

dLS(u− (Dt −∆u)−1(b(x)u+ − a(x)u− − (h(x, t) + sψ1)), Bβ(0), 0)

= dLS(u− (Dt −∆u)−1(b(x)u+ − a(x)u−

−(h(x, t) + s0ψ1) + λ(s− s0)ψ1(x)), Bβ(0), 0)

= dLS(u− (Dt −∆u)−1(b(x)u+ − a(x)u−

−(h(x, t) + s0ψ1)), Bβ(0), 0)

= 0,

where s ≤ s∗ and 0 ≤ λ ≤ 1. Thus we prove the lemma.

Proof of Theorem 1.1. By Lemma 3.4, there exists a large number
β > 0 (depending on C and s∗) such that all solutions of (1.1) are
contained in the ball Bβ(0) and the Leray-Schauder degree

deg(u− (Dt −∆u)−1(b(x)u+ − a(x)u− − (h(x, t) + sψ1)), B
∗
β(0), 0) = 0

for β > C. By Lemma 3.1, there exists s1 > 0, ϵ > 0 such that

deg(u− (−∆+Dt)
−1(b(x)u+ − a(x)u− − sψ1 − h), B∗

sϵ(sθ), 0) = (−1)n

for s ≥ s1. Here B
∗
r denotes a ball of radius r in H and

θ = −(Dt −∆− b(x))−1ψ1 =
ψ1

−ν1
> 0.

By Lemma 3.2, there exist positive constants s2, ϵ such that

deg(u− (Dt −∆)−1(b(x)u+ − a(x)u− − sϕ1 − h), B∗
sϵ(sθ), 0) = 1

for s ≥ s2, where θ = ϕ1
a(x)−λ1 < 0. If n is odd, by the homotopy ex-

cision property of the degree, the Leray-Schauder degree in the region
Bβ(0)\(B∗

sϵ(sθ)∪B∗
sϵ(sθ)) is 0, so we have no conviction of the existence
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of the third solution of (1.1) in the region Bβ(0)\(B∗
sϵ(sθ) ∪ B∗

sϵ(sθ)).
Thus (1.1) has at least two solutions if n is odd. If n is even, the Leray-
Schauder degree in the region Bβ(0)\(B∗

sϵ(sθ) ∪ B∗
sϵ(sθ)) is -2, so there

exists the third solution of (1.1) in the region Bβ(0)\(B∗
sϵ(sθ)∪B∗

sϵ(sθ)).
Thus (1.1) has at least three solutions if n is even. Thus we complete
the proof.
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