DOI QR코드

DOI QR Code

The Possibility of Environmental Paraquat Exposure

파라콰트의 환경성 노출 가능성

  • Oh, Se-Hyun (Department of Emergency Medicine, Gangneung Asan Hospital, Ulsan University) ;
  • Choi, Hong-Soon (Institute for Occupational and Environmental Health, Kwandong University) ;
  • You, Ho-Young (Institute for Occupational and Environmental Health, Kwandong University) ;
  • Park, Jun-Ho (Institute for Occupational and Environmental Health, Kwandong University) ;
  • Song, Jae-Seok (Department of Preventive Medicine, College of Medicine, Kwandong University)
  • 오세현 (울산의대 강릉아산병원 응급의학과) ;
  • 최홍순 (관동대학교 산업환경보건 연구센터) ;
  • 유호영 (관동대학교 산업환경보건 연구센터) ;
  • 박준호 (관동대학교 산업환경보건 연구센터) ;
  • 송재석 (관동대학교 의과대학 예방의학교실)
  • Received : 2011.06.28
  • Accepted : 2011.11.16
  • Published : 2011.12.31

Abstract

Objectives: Paraquat (PQ) is a widely used ionic pesticide that is fatal when ingested accidentally or for suicidal purposes. It is thought that chronic exposure of PQ is related with the development of Parkinson's disease, but epidemiological studies have not yet confirmed that theory. This study attempted to estimate the possibility of environmental PQ exposure through soil and water. Materials and Methods: We analyzed the amount of decomposed PQ solution in wet soil after exposure to ultraviolet light. An artificial rainfall condition was simulated over soil sprayed with PQ to measure the amount of eluted PQ. In addition, PQ was diluted in water from three differently rated rivers and the changes in PQ concentration were measured after ultraviolet exposure over one month. High performance liquid chromatography/ultra violet detection was used to analyze the concentrations of PQ. Results: In the method we used, the recovery rate of PQ showed a precision rate less than 5%, an accuracy greater than 88%, and the calibration equation was y=5538.8x-440.01($R^2$=0.9985). There were no significant differences in the concentrations of PQ obtained from the three specimens over a 1-week period. From the PQ-sprayed soil, the artificial rainfall conditions showed no PQ elution over a 1-month period, and there was no significant differences in PQ concentrations according to ultraviolet exposure among the three samples. Conclusions: PQ remains well adsorbed naturally in soil. However, it may still exist in an integrated state for a long time in the hydrosphere, so the possibility of PQ exposure through drinking water cannot be disqualified.

널리 사용되고 있는 제초제인 파라콰트가 수중이나 토양을 통해 인체에 노출될 가능성이 있음을 알아보기 위해 본 연구를 시행하였다. 수중에서 자외선에 의한 파라콰트의 분해 여부를 측정하였고, 토양에 파라콰트 살포 후 인공강우조건을 만들어 파라콰트의 침출 여부를 파악하였다. 또한, 용존산소량에 따라 등급이 다른 세가지 하천수에서 파라콰트의 자외선에 의한 분해양상을 조사하였다. HPLC/UVD를 이용한 토양과 수중에서 파라콰트의 용출 및 분해양상을 살펴본 결과 수중에서 자외선에 의한 파라콰트의 분해는 일어나지 않았고, 토양에서 파라콰트 살포 후, 파라콰트 용출 여부를 한 달간 살펴보았는데 용출은 되지 않았다. 그리고 하천수의 수질에 따른 파라콰트의 자외선에 의한 영향 또한 변화가 없었다. 분석방법에 대한 검출한계는 1.57 ${\mu}g$/L로 검출한계가 낮았다. 그리고 분석의 정밀도 및 정확도를 본 결과 3개의 다른 농도에서 6 % 이내의 정밀도와 약 88 % 이상의 정확도를 갖고 있어서 분석방법이 우수하였다. 토양에 살포된 파라콰트가 강수 등에 의해서 다시 용출될 가능성은 매우 낮다. 그러나 어떠한 경로이던 수계로 들어간 파라콰트는 오랫동안 잔류되어 인체에 노출될 수 있다는 것을 알 수 있었다. 본 연구는 실험실에서 진행된 것으로 실제 환경매체를 이용한 실증적인 연구와 이를 통한 역학적 연구가 필요하다고 할 수 있다.

Keywords

References

  1. Best J.A, Weber J.B, Weed S.B. Competition adsorption of diquat, paraquat and Ca on organic matter and exchange resin. Soil Sci 1972;114:444-450 https://doi.org/10.1097/00010694-197212000-00007
  2. Kahn S.U. Pesticides in the soil environment. Amsterdam, Elsevier Sci. Publ. Co, 1980, p.240
  3. Chun JC, Park NI, Kim SE, Lim SJ. Residue and adsorptive capacity of paraquat in orchard soils. Kor J Pesticide Sci 1998; 2(3):90-95(Korean)
  4. Hance R.J, Byast T.H, Smith P.D. Apparent decompositin of paraquat in soil. Soil Biol Biochem 1980;12:447-448 https://doi.org/10.1016/0038-0717(80)90025-5
  5. Kim JE, Kim BH, Ahn MY. Degradation of herbicide paraquat by Fenton reagent and UV light irradiation. Kor J Pesticide Sci 1999;3(3):20-26(Korean)
  6. Sedlak D.L. Aqueous-phase oxidation of polychlorinated biphenyls by hydroxy radical. Environ Sci Technol 1991;25:1419-1427 https://doi.org/10.1021/es00020a009
  7. Rodrigo Franco, Sumin Li, Humberto Rodriguez-Rocha, Michaela Burns, Mihalis I. Panayiotidis. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson's disease. Chemico-Biological Interactions 2010;188(2):289-300 https://doi.org/10.1016/j.cbi.2010.06.003
  8. Semchuk KM, Love EJ, Lee RG. Parkinson's disease and exposure to agricultural work and pesticide chemicals. Neurology 1992 Jul;42(7):1328-35. https://doi.org/10.1212/WNL.42.7.1328
  9. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998;50(5):1346-50. https://doi.org/10.1212/WNL.50.5.1346
  10. Kwon JW, Lee JK. Leaching characteristics of the bipyridylium herbicide paraquat in soil column. Korean J Pesticide Sci 1999;3(2):29-36(Korean)
  11. Tucker BV, Pack DE, Ospenson JN. Adsorption of bipyridylium herbicides in soil. J Agric Food Chem 1967;15(6):1005-1008. https://doi.org/10.1021/jf60154a017
  12. Cheong HK, Lee CS, Kim YH, Sung JH, Yi SE, Kim WJ, Park JS, Kim EH, Kim HJ, Jang MS, Shim MY. Nationwide survey on the prevalence of Parkinson's disease in Korea. Korean Centers for Disease Control and Prevention, 2007, pp.52-54(Korean)
  13. Frank R, Braun HE, Ripley BD, Clegg BS. Contamination of rural ponds with pesticide, 1971-85, Ontario, Canada. Bull Environ Contam Toxicol 1990;44:401-409 https://doi.org/10.1007/BF01701222