DOI QR코드

DOI QR Code

Estrogenic Compounds Compatible with a Conditional Gene Expression System for the Phytopathogenic Fungus Fusarium graminearum

  • Lee, Jung-Kwan (Department of Applied Biology, Dong-A University) ;
  • Son, Ho-Kyoung (Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University) ;
  • Lee, Yin-Won (Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University)
  • Received : 2011.09.17
  • Accepted : 2011.10.10
  • Published : 2011.12.01

Abstract

The ascomycete fungus Fusarium graminearum is an important plant pathogen responsible for Fusarium head blight in small grains and ear rot on maize. This fungus also produces the estrogenic metabolite, zearalenone (ZEA) that causes estrogenic disorders in humans and animals. Previously, we developed a conditional gene expression system for this fungus using a ZEA-inducible promoter (Pzear). In the present study, four other estrogenic compounds, including ${\beta}$-estradiol, estriol, estrone, and secoisolariciresinol, were screened as possible substitutes for ZEA in this system. Among them, ${\beta}$-estradiol was able to successfully induce the expression of a gene controlled by Pzear, while estrone was only able to partially induce its expression but the other two compounds were not effective. In combination, these results demonstrate that ${\beta}$-estradiol can replace ZEA in this conditional gene expression system, thereby eliminating the need to use the more expensive reagent, ZEA, and facilitating high-throughput functional analyses of F. graminearum in future studies.

Keywords

References

  1. Desjardins, A. E. 2006. Fusarium mycotoxins: Chemistry, genetics and biology. APS Press, St. Paul, MN.
  2. Ding, S., Mehrabi, R., Koten, C., Kang, Z., Wei, Y., Seong, K., Kistler, H. C. and Xu, J.-R. 2009. Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum. Eukaryot. Cell 8:867-876. https://doi.org/10.1128/EC.00048-09
  3. Gaffoor, I. and Trail, F. 2006. Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl. Environ. Microbiol. 72:1793-1799. https://doi.org/10.1128/AEM.72.3.1793-1799.2006
  4. Han, Y.-K., Lee, T., Han, K.-H., Yun, S.-H. and Lee, Y.-W. 2004. Functional analysis of the homoserine O-acetyltransferase gene and its identification as a selectable marker in Gibberella zeae. Curr. Genet. 46:205-212. https://doi.org/10.1007/s00294-004-0528-2
  5. Harris, S. D. 2005. Morphogenesis in germinating Fusarium graminearum macroconidia. Mycologia 97:880-887. https://doi.org/10.3852/mycologia.97.4.880
  6. Kanda, N. and Watanabe, S. 2003a. $17\beta$-estradiol enhaces the production of nerve growth factor in THP-1-derived macrophages or peripheral blood monocyte-derived macrophages. J. Invest. Dermatol. 121:771-780. https://doi.org/10.1046/j.1523-1747.2003.12487.x
  7. Kanda, N. and Watanabe, S. 2003b. $17\beta$-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting Bcl-2 expression. J. Invest. Dermatol. 121:1500-1509. https://doi.org/10.1111/j.1523-1747.2003.12617.x
  8. Kim, J.-E., Jin, J., Kim, H., Kim, J.-C., Yun, S.-H. and Lee, Y.-W. 2006. GIP2, a putative transcription factor that regulates the aurofusarin biosynthetic gene cluster in Gibberella zeae. Appl. Environ. Microbiol. 72:1645-1652. https://doi.org/10.1128/AEM.72.2.1645-1652.2006
  9. Kim, Y.-T., Lee, Y.-R., Jin, J., Han, K.-H., Kim, H., Kim, J.-C., Lee, T., Yun, S.-H. and Lee, Y.-W. 2005. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol. Microbiol. 58:1102-1113. https://doi.org/10.1111/j.1365-2958.2005.04884.x
  10. Lampe, J. W. 2003. Isoflavonid and lignan phytoestrogens as dietary biomarkers. J. Nutr. 133: 956S-964S.
  11. Lee, J., Chang, I.-Y., Kim, H., Yun, S.-H., Leslie, J. F. and Lee, Y.- W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Envirion. Microbiol. 75:3289-3295. https://doi.org/10.1128/AEM.02287-08
  12. Lee, J., Park, C.-J., Kim, J.-C., Kim, J.-E. and Lee, Y.-W. 2010a. Identification and functional characterization of genes involved in the sexual reproduction of the ascomycete fungus Giberella zeae. Biochem. Biophys. Res. Commun. 401:48-52. https://doi.org/10.1016/j.bbrc.2010.09.005
  13. Lee, J., Son, H., Lee, S., Park, A. R. and Lee, Y.-W. 2010b. Development of a conditional gene expression system using a zearalenone-inducible promoter for the ascomycete fungus Gibberella zeae. Appl. Environ. Microbiol. 76:3089-3096. https://doi.org/10.1128/AEM.02999-09
  14. Lee, S., Son, H., Lee, J., Min, K., Choi, K. J., Kim, J.-C. and Lee, Y.-W. 2011a. Functional analyses of two acetyl coenzymes A synthetases in the ascomycete Gibberella zeae. Eukaryot. Cell 10:1043-1052. https://doi.org/10.1128/EC.05071-11
  15. Lee, S., Son, H., Lee, J., Lee, Y.-R. and Lee, Y.-W. 2011b. A putative ABC transporter gene, ZRA1, is required for zearalenone production in Gibberella zeae. Curr. Genet. 57:343-351.
  16. Lee, S.-H., Lee, J., Lee, S., Park, E.-H., Kim, K.-W., Kim, M.-D., Yun, S.-H. and Lee, Y.-W. 2009. GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot. Cell 8:116-127. https://doi.org/10.1128/EC.00176-08
  17. Lee, S.-H., Lee, J., Nam, Y.J., Lee, S., Ryu, J.-G. and Lee, T. 2010c. Population structure of Fusarium graminearum from maize and rice in 2009 in Korea. Plant Pathol. J. 26:321-327. https://doi.org/10.5423/PPJ.2010.26.4.321
  18. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Professional, Ames, IA.
  19. Lysoe, E., Klemsdal, S. S., Bone, K. R., Frandsen, R..J. N., Johansen, T., Thrane, U. and Giese, H. 2006. The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Appl. Environ. Microbiol. 72:3924-3932. https://doi.org/10.1128/AEM.00963-05
  20. Min, K., Lee, J., Kim, J.-C., Kim, S. G., Kim, Y.-H., Vogel, S., Trail, F. and Lee, Y.-W. 2010. A novel gene, ROA, is required for normal morphogenesis and discharge of ascospores in Gibberella zeae. Eukaryot. Cell 9:1495-1503. https://doi.org/10.1128/EC.00083-10
  21. Nussey, S. and Whitehead, S. 2001. Endocrinology: an integrated approach. Oxford: BIOS Scientific Bub., London, UK.
  22. Sambrook, J. S. and Russell, D. 2001. Molecular cloning: A laboratory manual, Third ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  23. Seong, K., Hou, Z., Tracy, M., Kistler, H. C. and Xu, J.-R. 2005. Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum. Phytopathology 95:744-750. https://doi.org/10.1094/PHYTO-95-0744
  24. Smeds, A. I. Eklund, P. C., Sjoholm, R. E., Willfor, S. M., Nishibe, S., Deyama, T. and Holmbom, B. R. 2007. Qunatification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J. Agric. Food Chem. 55:1337-1346. https://doi.org/10.1021/jf0629134
  25. Son, H., Lee, J., Park, A. R. and Lee, Y.-W. 2011. ATP citrate lase is required for normal sexual and asexal development in Gibberella zeae. Fungal Genet. Biol. 48:408-417. https://doi.org/10.1016/j.fgb.2011.01.002
  26. Wang, L. Q. 2002. Mammalian phytoestrogens: enterodiol and enterolactone. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 777:289-309. https://doi.org/10.1016/S1570-0232(02)00281-7
  27. Wolf, J. C. and Mirocha, C. J. 1973. Regulation of sexual reproduction in Gibberella zeae (Fusarium roseum 'Graminearum'). Can. J. Microbiol. 19:725-734. https://doi.org/10.1139/m73-117
  28. Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-Joint PCR: A PCRbased molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001

Cited by

  1. Functional analyses of individual mating-type transcripts atMATloci inFusarium graminearumandFusarium asiaticum vol.337, pp.2, 2012, https://doi.org/10.1111/1574-6968.12012
  2. Functional Roles of FgLaeA in Controlling Secondary Metabolism, Sexual Development, and Virulence in Fusarium graminearum vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0068441
  3. Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum vol.6, pp.1, 2016, https://doi.org/10.1038/srep28154