DOI QR코드

DOI QR Code

Characteristics of Cucumber mosaic virus isolated from Zea mays in Korea

  • Kim, Mi-Kyeong (Crop Protection Division, National Academy of Agricultural Science) ;
  • Kwak, Hae-Ryun (Crop Protection Division, National Academy of Agricultural Science) ;
  • Lee, Su-Heon (Crop Protection Division, National Academy of Agricultural Science) ;
  • Kim, Jeong-Soo (Crop Protection Division, National Academy of Agricultural Science) ;
  • Kim, Kook-Hyung (Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Cha, Byeong-Jin (Department of Plant Medicine, Chungbuk National University) ;
  • Choi, Hong-Soo (Crop Protection Division, National Academy of Agricultural Science)
  • Received : 2011.07.06
  • Accepted : 2011.08.10
  • Published : 2011.12.01

Abstract

A virus causing mottle and stunt symptom on Zea mays was observed around Ulleng-do, Korea and identified as Cucumber mosaic virus (CMV-ZM) based upon biological, serological, and molecular characteristics. In host range studies, the CMV-ZM isolate produced local lesions on Datura stramonium, Vigna unguiculata, Cucurbita moschata, Chenopodium amaranticolor, Ch. quinoa, whereas this isolate produced systemic mosaic on Nicotiana tabacum cv. 'Xanthi-nc', Capsicum annuum, Solanum lycopersicum, Solanum melongena, Cucurbita pepo, and Z. mays. In addition, chlorotic local rings on inoculated leaves along with severe mosaic, malformation, and fern leaf symptoms on upper systemic leaves were shown in N. glutinosa plants. Complete nucleotide sequences of each genomic RNA segment was determined and compared to those of the other CMV strains. Comparison of the nucleotide sequence of 1a open reading frame (ORF) revealed approximately 89.2-92.4% sequence identity with each CMV subgroup IA and IB strain, while showing only 78% sequence identity with CMV subgroup II. Nucleotide sequence analysis of RNA2 ORFs revealed 85.3-97.6% sequence identity with subgroup I. In ORFs of RNA3, levels of nucleotide sequence identities were higher than 92-99.2% with CMV subgroup I and lower than 82% with CMV isolates of subgroup II. These results suggest that CMV-ZM isolate is more closely related to subgroup I than subgroup II and therefore, CMV-ZM isolate might be classified into as CMV subgroup I based on biological and molecular analysis.

Keywords

References

  1. Aramburu, J., Galipienso, L. and Lopez, C. 2007. Reappearance of Cucumber mosaic virus isolates belonging to subgroup IB in tomato plants in north eastern Spain. J. Phytopathol. 155:513-518. https://doi.org/10.1111/j.1439-0434.2007.01267.x
  2. Chaumpluk, P., Sasaki, Y., Nakajima, N., Nagano, H., Nakamura, I., Suzuki, K., Mise, K., Inouye, N., Okuno, T. and Furusawa, I. 1996. Six new subgroup I members of Japanese Cucumber mosaic virus as determined by nucleotide sequence analysis on RNA3's cDNAs. Ann. Phytopathol. Soc. Jpn. 62:40-44. https://doi.org/10.3186/jjphytopath.62.40
  3. Cho, J. D., Lee, S. H., Kim, J. S., Choi, G. S., Kim, H. R., Chung, B. N. and Ryu, K. H. 2006. Characteristics of Cucumber mosaic virus -VCH causing vein chlorosis on red pepper in Korea. Res. Plant Dis. 12:226-230. https://doi.org/10.5423/RPD.2006.12.3.226
  4. Choi, G. S., Kim, J. H., Kim, J. S. and Choi, J. K. 2004. Characterization of Cucumber mosaic virus isolated from Water chickweed (Stellaria aquatica). Plant Pathol. J. 20:131-134. https://doi.org/10.5423/PPJ.2004.20.2.131
  5. Damsteegt, V. D. 1981. Exotic virus and viruslike diseases of maize. pp 110-123 in virus and virus-like diseases of maize in the United States, edited by Gordon D. T., J. K. Knoke, and G.E. Scott. Ohio Agricultural Research and Development Center; Southern Cooperative Series Bulletin 247, Wooster, USA.
  6. Ding, S. W., Anderson, B. J., Haase, H. R. and Symons, R. H. 1994. New overlapping gene encoded by the Cucumber mosaic virus genome. Virology. 198:593-601. https://doi.org/10.1006/viro.1994.1071
  7. Douine, L., Quiot J. B., Marchoux, G. and Archange, P. 1979. Recensement des especes vegatales sensible au virus de la mosaique du concombre (CMV). Etude bibliographique. Annales de Phytopathologie 11:439-475.
  8. Food and Agriculture Organization of the United Nations, Statistics Division 2009. Maize, rice and wheat: area harvested, production quantity, yield.
  9. Jeon, Y. W., Hong, J. S., Lee, S. Y., Ryu, K. H. and Choi, J. K. 2006. Characterization of an isolate of Cucumber mosaic virus isolated from Canna generalis Bailey. Res. Plant Dis. 12:298-302. https://doi.org/10.5423/RPD.2006.12.3.298
  10. Hsu, H. T., Barzuna, L., Hsu, Y. H., Bliss, W. and Perry, K. Y. 2000. Identification and subgrouping of Cucumber mosaic virus with mouse monoclonal antibodies. Phytopathology. 90:615-620. https://doi.org/10.1094/PHYTO.2000.90.6.615
  11. Kaper, J. M. and Waterworth, H. E. 1981. Cucumoviruses. Handbook of Plant Virus Infections and Comparative Diagnosis. 258-332.
  12. Kim, M. K., Kwak, H. R., Ko, S. J., Lee, S. H., Kim, J. S., Kim, K. H., Cha, B. J. and Choi, H. S. 2010a. Chatacteristics of Cucumber mosaic virus infecting pin wood coneflower in Korea. Plant Pathol. J. 26:93-98. https://doi.org/10.5423/PPJ.2010.26.1.093
  13. Kim, M. K., Kwak, H. R., Jeong, S. G., Ko, S. J., Lee, S. H., Kim, J. S., Kim, K. H., Choi, J. K., Choi, H. S. and Cha, B. J. 2010b. First report of Cucumber mosaic virus infecting from Zucchini in Korean. Plant Pathol. J. 26:139-148. https://doi.org/10.5423/PPJ.2010.26.2.139
  14. Lee, B. C., Hong, Y. K., Hong, S. J., Park, S. T. and Lee, K. W. 2005. Occurrence and detection of Rice black-streaked dwarf virus in Korea. Plant Pathol. J. 21:172-173. https://doi.org/10.5423/PPJ.2005.21.2.172
  15. Lee, J. A., Choi, S. K., Yoon, J. Y., Hong, J. S., Ryu, K. H., Lee, S. Y. and Choi, J. K. 2007. Variation in the pathogenicity of lily isolates of Cucumber mosaic virus. Plant Pathol. J. 23:251-259. https://doi.org/10.5423/PPJ.2007.23.4.251
  16. Lee, H. G., Kim, S. R., Jeon, Y. W., Kwon, S. B., Ryu, K. H. and Choi, K. J. 2008. Identification and characterization of three isolates of Cucumber mosaic virus isolated from weed hosts. Res. Plant Dis. 14:15-20. https://doi.org/10.5423/RPD.2008.14.1.015
  17. Lee, W. K. and Seo, H. Y. 1992. On eighteen aphids (Tribe aphidini) occurring in Korea with description of a new species (Homoptera: aphididae). Kor. J. Entomol. 22:101−111.
  18. Martelli, G. P. and Russo, M. 1985. Virus-host relationships. Symptomatological and ultrastructural aspects. In The Plant Viruses. Polyhedral Virions with Tripartite Genomes, pp. 163-205. Edited by R.I.B. Francki. New York: Plenum Press
  19. Marchoux, G., Marrou, J., Devergne, J. C., Quiot, J. B., Douine, L. and Lot, H. 1975. Cucumber mosaic virus hybrids constructed by exchanging RNA components. Meded. Fac. Landbouwwet. Rijksuniv. Gent. 40:59-72.
  20. Nei, M. and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University Press, New York. pp. 333.
  21. Oh, S. M., Kim, S. R., Hong, J. S., Ryu, K. H., Lee, G. P. and Choi, J. K. 2008. Characterization of an isolate of Cucumber mosaic virus isolated from Chinese aster (Callistephus chinensis). Res. Plant Dis. 14:229-232. https://doi.org/10.5423/RPD.2008.14.3.229
  22. Palukaitis, P., Roossinck, M. J., Dietzgen, R. G. and Francki, R. I. 1992. Cucumber mosaic virus. Adv. Virus Res. 41:281-348. https://doi.org/10.1016/S0065-3527(08)60039-1
  23. Palukaitis, P. and Garcia-Arenal, F. 2003. Cucumoviruses. Adv. Virus Res. 62:241-323. https://doi.org/10.1016/S0065-3527(03)62005-1
  24. Panjan, M. 1966. About some manifestations of mosaic on corn in Yugoslavia. Rev. Roum. Biol. Botanique 11:159-162.
  25. Rao, A. L. N. and Francki, R. I. B. 1982. Distribution of determinants for symptom production and host range on the three RNA components of Cucumber mosaic virus. J. Gen. Virol. 61:197-205. https://doi.org/10.1099/0022-1317-61-2-197
  26. Ryu, K. H., Kim, C. H. and Palukaitis, P. 1998. The coat protein of Cucumber mosaic virus is a host range determinant for infection of Maize. Mol. Plant-Microbe Interact. 11:351-357. https://doi.org/10.1094/MPMI.1998.11.5.351
  27. Roossinck, M. J. 2002: Evolutionary history of Cucumber mosaic virus as deduced by phylogenetic analyses. J. Virol. 76:3382-3387. https://doi.org/10.1128/JVI.76.7.3382-3387.2002
  28. Roossinck, M. J. 2003. Plant RNA virus evolution. Curr. Opin. Microbiol. 6:406-409. https://doi.org/10.1016/S1369-5274(03)00087-0
  29. Shurtleff, M. C. 1986. Compendium of corn diseases, 2nd edition, St. Paul, Minnesota: Am. Phytopathol. Soc. 105.
  30. Wahyuni, W. S., Dietzgen, R. G., Hanada, K. and Francki, R. I. B. 1992. Serological and biological variation between and within subgroup I and II strains of Cucumber mosaic virus. Plant Pathol. 41:28-297.
  31. Wellman, F. L. 1934. Infection of Zea mays and various Gramineae by celery mosaic virus in Florida. Phytopathology, 24:1035-1037.
  32. White, D. G. 1999. Compendium of corn diseases, 3rd edition, St. Paul, Minnesota: Am. Phytopathol. Soc. 38-43
  33. Yoon, S. K. and Choi, S. S. 1974. A list of aphids found on growing crops. College of agricultural science, Wonkwang Univ. 5:69-74.

Cited by

  1. Natural Infection of Maize byCucumber Mosaic Virusin China vol.161, pp.11-12, 2013, https://doi.org/10.1111/jph.12141
  2. First Report of Cucumber mosaic virus Isolated from Wild Vigna angularis var. nipponensis in Korea vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.NT.01.2013.0012
  3. Overexpression of OsHAP2E for a CCAAT-binding factor confers resistance to Cucumber mosaic virus and Rice necrosis mosaic virus vol.81, pp.1, 2015, https://doi.org/10.1007/s10327-014-0564-9
  4. to cucumber mosaic virus (CMV) reveals geographical region-related resistance to CMV in Japan vol.67, pp.6, 2018, https://doi.org/10.1111/ppa.12848