Investigating the Spatial Focusing of Time Reversal Lamb Waves Using a Virtual Sensor Model on a Rectangular Plate

직사각형 판에서 가상탐지자 모델을 이용한 시간반전램파의 공간모임 규명

  • 박현우 (동아대학교 토목공학과)
  • Received : 2011.05.11
  • Accepted : 2011.07.20
  • Published : 2011.10.31

Abstract

During the last three years, the possibility of the time reversal Lamb waves has been paid attention to for structural health monitoring of a plate. This study proposes a numerical scheme which can simulate the spatial focusing of time reversal Lamb waves on a rectangular plate. In this scheme, a time reversal process is formulated in the frequency domain using active virtual sensors being equivalent to the mirror effects of an actual sensor due to wave reflection on the plate boundary. Forward and backward Lamb wave propagations are represented by scalar functions for simulating the spatial focusing of time reversal Lamb waves. The validity of the proposed scheme is demonstrated through the comparison to the results of finite element analysis in which the spatial focusing of time reversal Lamb waves is realized by wafer-type piezoelectric(PZT) transducers collocated on a rectangular plate.

최근 3년간 판 구조물 건전성 감시분야에서 시간반전램파(Time reversal Lamb waves)의 가능성이 주목받고 있다. 이 연구에서는 직사각형 평판에서 시간반전램파의 공간모임을 적은 연산비용으로 효과적으로 모사할 수 있는 수치기법을 제안한다. 제안된 기법에서는 파 반사에 의해 발생하는 실제 탐지자의 거울상 효과와 등가를 이루는 활성 가상탐지자를 이용하여 시간반전과정을 주파수 영역에서 정식화한다. 시간반전램파의 공간모임 모사에서 필요한 순방향 및 역방향 파 전달은 스칼라 형태의 함수로 표현한다. 제안된 방법을 웨이퍼 형태의 압전소자가 병치된 직사각형 평판에서 시간반전램파의 공간 모임 문제에 적용하고 유한요소해석 결과와 비교하여 타당성을 검증한다.

Keywords

References

  1. 박현우 (2010) 가상 탐지자 배열 모델을 이용한 직사각형 판에서 $A_o$ 램파 모드 시간반전과정 모사, 한국소음진동공학회논문집, 20(5), pp.460-469.
  2. 박현우, 김승범, 손훈 (2009) 램파의 분산성과 파 반사가 시간반전과정에 미치는 영향의 이해, 한국전산구조공학회 논문집, 22(1), pp.89-103.
  3. Achenbach, J.D. (2004) Reciprocity in Elastodynamics (Cambridge Monographs on Mechanics), Cambridge University Press, Cambridge, UK.
  4. Derode, A., Tourin, A., Fink, M. (2002) Time Reversal Versus Phase Conjugation in a Multiple Scattering Environment, Ultrasonics, 40, pp.275-280. https://doi.org/10.1016/S0041-624X(02)00106-3
  5. Draeger, C., Fink, M. (1997) One-channel Time Reversal of Elastic Waves in a Chaotic 2D-silicon Cavity, Physical Review Letters, 79(3), pp.407-410. https://doi.org/10.1103/PhysRevLett.79.407
  6. Draeger, C., Fink, M. (1999a) One-channel Time Reversal in Chaotic Cavities: Theoretical limits, Journal of the Acoustical Society of America, 105(2), pp.611-617. https://doi.org/10.1121/1.426251
  7. Draeger, C., Aime, J.C., Fink, M. (1999b) Onechannel time reversal in chaotic cavities: Experimental results, Journal of the Acoustical Society of America, 105(2), pp.618-625. https://doi.org/10.1121/1.426252
  8. Fink, M. (1999) Time-reversed Acoustics, Scientific American, 281(5), pp.91-97. https://doi.org/10.1038/scientificamerican1199-91
  9. Fink, M., Cassereau, D., Derode, A., Prada, C., Roux, P., Tanter, M., Thomas, J.L., Wu, F. (2000) Time-reversed acoustics, Rep. Prog. Phys., 63, pp.1933-1995. https://doi.org/10.1088/0034-4885/63/12/202
  10. Fink, M., de Rosny, J. (2002) Time-reversed Acoustics in Random Media and in Chaotic Cavities, Nonlinearity, 15, pp.R1-R18. https://doi.org/10.1088/0951-7715/15/1/201
  11. Gangadharan, R., Murthy, C.R.L., Gopalakrishnan, S., Bhat, M.R. (2009) Time Reversal Technique for Health Monitoring of Metallic Structure using Lamb Waves, Ultrasonics, 49(8), pp.696-705. https://doi.org/10.1016/j.ultras.2009.05.002
  12. Graff, K.F. (1975) Wave Motion in Elastic Solids, Oxford University Press, London.
  13. Ing, R.K., Fink, M. (1996) Time Recompression of Dispersive Lamb Waves using a Time Reversal Mirror Application to Flaw Detection in Thin Plates, IEEE Ultrasonics Symposium, 1, pp.659-663.
  14. Ing, R.K., Fink, M. (1998a) Self-focusing and Time Recompression of Lamb Waves using a Time Reversal Mirror, Journal of the Acoustical Society of America, 104(2), pp.801-807. https://doi.org/10.1121/1.423354
  15. Ing, R.K., Fink, M. (1998b) Time-reversed Lamb Waves. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency control, 45(4), pp.1032- 1043.
  16. KISTI Supercomputer Center (2011) (http://www. ksc.re.kr/)
  17. Nunez, I., Negreira, C. (2005) Efficiency Parameters in Time Reversal Acoustics: Applications to Dispersive Media and Multimode Wave Propagation, Journal of the Acoustical Society of America, 117(3), pp.1202-1209. https://doi.org/10.1121/1.1856272
  18. Park, H.W., Sohn, H., Law, K.H., Farrar, C.R. (2007) Time Reversal Active Sensing for Health Monitoring of a Composite Plate, Journal of Sound and Vibration, 302(1-2), pp.50-66. https://doi.org/10.1016/j.jsv.2006.10.044
  19. Raghavan, A., Cesnik, C.E.S. (2007) Review of Guided-wave Structural Health Monitoring, The Shock and Vibration Digest, 39(2), pp.91-114. https://doi.org/10.1177/0583102406075428
  20. Raghavan, A., Cesnik, C.E.S. (2005) Finitedimensional Piezoelectric Transducer Modeling for Guided Wave Based Structural Health Monitoring, Smart Materials and Structures, 14, pp.1448- 1461. https://doi.org/10.1088/0964-1726/14/6/037
  21. Rose, J.L. (1999) Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, UK.
  22. Sohn, H., Farrar, C.H., Hemez, F.M., Czarnecki, J.J., Shunk, D.D., Stinemates, D.W., Nadler, B.R. (2003) A Review of Structural Health Monitoring Literature: 1996-2001, Los Alamos National Laboratory Report LA-13976-MS.
  23. Sohn, H., Park, H.W., Law, K.H., Farrar, C.R. (2007a) Damage Detection in Composite Plates by using an Enhanced Time Reversal Method, Journal of Aerospace Engineering ASCE, 133(8), pp.1080 -1091.
  24. Sohn, H., Park, H.W., Law, K.H., Farrar, C.R. (2007b) Combination of a Time Reversal Process and a Consecutive Outlier Analysis for Baseline- Free Damage Diagnosis, Journal of Intelligent Materials and Smart Structures, 18(4), pp.335-34.
  25. Sohn, H., Kim, S.D., Harries, K. (2008) Referencefree Damage Classification Based on Cluster Analysis, Computer-Aided Civil and Infrastructure Engineering, 23(5), pp.324-338. https://doi.org/10.1111/j.1467-8667.2008.00541.x
  26. Su, Z.Q., Ye, L., Lu, Y. (2006) Guided Lamb waves for Identification of Damage in Composite Structures: A Review, Journal of Sound and Vibration, 295(3-5), pp.753-780. https://doi.org/10.1016/j.jsv.2006.01.020
  27. Wang, L., Yuan F.G. (2007) Active Damage Localization Technique Based on Energy Propagation of Lamb waves, Smart Structures and Systems, 3(2) 201-217. https://doi.org/10.12989/sss.2007.3.2.201
  28. Viktorov, I.A. (1967) Rayleigh and Lamb Waves, Plenum Press, New York.