DOI QR코드

DOI QR Code

Fabrication and characterization of tilted R-plane sapphire wafer for nonpolar a-plane GaN

경사각을 갖는 비극성 a-GaN용 R-면 사파이어 기판의 제조 및 특성

  • Kang, Jin-Ki (Department of Materials Science & Engineering, Kyonggi University) ;
  • Kim, Young-Jin (Department of Materials Science & Engineering, Kyonggi University)
  • Received : 2011.07.08
  • Accepted : 2011.07.22
  • Published : 2011.10.31

Abstract

Tilt angle of r-plane wafer is a one of the important factors related with the quality of the GaN epi, so the fine control of the tilt angle is important for the growing of high quality non-polar a-GaN epi. We prepared the R-plane sapphire wafers with slight tilt angles for nonpolar a-plane GaN. The target tilt angles of ${\alpha}$ and ${\beta}$ were 0, -0.1, -0.15, -0.2, -0.4, $-0.6^{\circ}$ and -0.1, 0, $0.1^{\circ}$, respectively. The tilt angles of sliced R-plane sapphire wafers were measured by x-ray and the statistical evaluation of reliability of tilt angles of wafers were performed. The tolerance of the tilt angle was ${\pm}0.03^{\circ}$. R-plane sapphire wafers have relatively large distributions of BOW and TTV data than c-plane sapphire wafers due to the large anisotropy of R-plane. As the tilt angle ${\alpha}$ was increased from -0.1 to $-0.6^{\circ}$, the step widths and heights were decreased from 156 nm to 26 nm and 0.4 nm to 0.2 nm, respectively. The growth and qualities of GaN epi seems to be largely affected by the change of step structure of R-plane sapphire wafers with tilt angle.

비극성 a-GaN의 성장 시 기판의 경사각은 GaN epi의 품질을 결정하는 중요한 변수로서 양질의 a-GaN 성장을 위해서는 R-면 기판의 경사각이 정밀하게 제어된 기판이 요구된다. 본 연구에서는 R-면 기판의 경사각 ${\alpha}$${\beta}$의 목표값이 각각 0, -0.1, -0.15, -0.2, -0.4, $-0.6^{\circ}$와 -0.1, 0, $0.1^{\circ}$인 절단기판을 제조하였다. 절단기판의 경사각을 x-ray를 이용하여 측정하고 통계적인 분석을 통해 기판의 경사각 제어공정에 대한 신뢰성을 평가하였으며, R-면 기판의 경사각의 공차는 ${\pm}0.03^{\circ}$의 값을 가졌다. R-면 기판은 상대적으로 큰 이방성에 의해 c-면 기판에 비해 휨(BOW)과 두께편차(TTV)가 상대적으로 큰 분포를 갖는 것으로 나타났다. AFM을 이용하여 기판 표면을 관찰한 결과, 측정된 R-면기판의 step 높이는 0.2~0.4 nm로 거의 일정한 값을 가졌으며 step 너비는 경사각 ${\alpha}$가 증가함에 따라 156 nm에서 26 nm로 감소하였으며 이와같은 R-면 기판의 step 구조의 변화는 epi 성장에 큰 영향을 미치는 것으로 판단된다.

Keywords

References

  1. D. Miller, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood and C.A. Burrus, "Electric field dependence of optical absorption near the band gap of quantum-well structures", Phys. Rev. Lett. 32(2) (1985) 1043.
  2. P. Waltereit, O. Brandt, A. Trampert, H.Y. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K.H. Ploog, "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes", Nature 406(24) (2000) 865. https://doi.org/10.1038/35022529
  3. M.D. Craven, S.H. Lim, F. Wu, J.S. Speck and S.P. DenBaars, "Structural characterization of nonpolar (11- 20) a-plane GaN thin films grown on (1-102) r-plane sapphire", Appl. Phys. Lett. 81(3) (2002) 469. https://doi.org/10.1063/1.1493220
  4. B.A. Haskell and F. Wu, "Structural and morphological characteristics of planar (11-20) a-plane gallium nitride grown by hydride vapor phase epitaxy", Appl. Phys. Lett. 83(8) (2003) 1554. https://doi.org/10.1063/1.1604174
  5. M.D. Craven, P. Waltereit, J.S. Speck and S.P. Den- Baars, "Microstructural evolution of a-plane GaN grown on a-plane SiC by metalorganic chemical vapor deposition", Appl. Phys. Lett. 84(8) (2004) 1281. https://doi.org/10.1063/1.1650545
  6. Masataka Imura, Akira Hoshino, Kiyotaka Nakano, Michinobu Tsuda, Motoaki Iwaya, Satoshi Kamiyama, Hiroshi Amano and Isamu Akasaki, "Flat (11-20) GaN thin film on precisely offset-controlled (1-102) sapphire substrate", Jpn. J. Appl. Phys. 44(10) (2005) 7418. https://doi.org/10.1143/JJAP.44.7418
  7. X. Ni, Y. Fu, Y.T. Moon, N. Biyikli and H. Morkoc, "Optimization of (11-20) a-plane GaN growth by MOCVD on (1-10-2) r-plane sapphire", J. Cryst. Growth 290 (2006) 166. https://doi.org/10.1016/j.jcrysgro.2006.01.008
  8. Masahiro Araki, Noriaki Mochimizo, Katsuyuki Hoshino and Kazuyuki Tadatomo, "Effect of misorientation angle of r-plane sapphire substrate on a-plane GaN grown by metalorganic vapor phase epitaxy", Jpn. J. Appl. Phys. 47(1) (2008) 119. https://doi.org/10.1143/JJAP.47.119
  9. S.-M. Hwang, Y.G. Seo, K.H. Baik, I.-S. Cho, J.H. Baek, S. Jung, T.G. Kim and M. Cho, "Demonstration of nonpolar a-plane InGaN/GaN light emitting diode on r-plane sapphire substrate", Appl. Phys. Lett. 95 (2009) 071101. https://doi.org/10.1063/1.3206666
  10. B.A. Haskell, S. Nakamura, S.P. DenBaars and J.S. Speck, "Progress in the growth of nonpolar gallium nitride", Phys. Stat. Sol.(b) 244(8) (2007) 2847. https://doi.org/10.1002/pssb.200675625
  11. Honglin Zhu, Luiz A. Tessaroto, Robert Sabia, Victor A. Greenhut, Maynard Smith and Dale E. Niesz, "Chemical mechanical polishing(CMP) anisotropy in sapphire", Applied Surface Science 236 (2004) 120. https://doi.org/10.1016/j.apsusc.2004.04.027
  12. J.K. Kang, J.H. Kim and Y.J. Kim, "Fabrication of Rplane sapphire wafer for nonpolar a-plane GaN", Journal of the Microelectronics & Packaging Society 18(3) (2011) in press.
  13. S.H. Park, J. Park, D.-J. You, D. Moon, N. Kim, J. Kim, J. Kang, S.-M. Lee, J.-S. Kim, M.-S. Yang, T. Kim and E. Yoon, "Effects of r-plane sapphire substrate tilt angles on the growth behavior of non-polar a-plane GaN", will be published.

Cited by

  1. The growth of GaN on the metallic compound graphite substrate by HVPE vol.23, pp.5, 2013, https://doi.org/10.6111/JKCGCT.2013.23.5.213
  2. The effects of growth temperatures and V/III ratios at 1000℃ for a-plane GaN epi-layer on r-plane sapphire grown by HVPE vol.25, pp.2, 2015, https://doi.org/10.6111/JKCGCT.2015.25.2.056
  3. Analysis of thermal stress through finite element analysis during vertical Bridgman crystal growth of 2 inch sapphire vol.25, pp.6, 2015, https://doi.org/10.6111/JKCGCT.2015.25.6.231