Isolation and Characterization of Starch-hydrolyzing Pseudoalteromonas sp. A-3 from the Coastal Sea Water of Daecheon, Republic of Korea

대한민국 대천 해안에서 분리한 전분 분해능을 갖는 Pseudoalteromonas sp. A-3 균주의 특징 및 동정

  • Chi, Won-Jae (Department of Biological Science, Myongji University) ;
  • Park, Da-Yeon (Department of Biological Science, Myongji University) ;
  • Jeong, Sung-Cheol (Division of Forest Disaster Management, Korea Forest Research Institute) ;
  • Chang, Yong-Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hong, Soon-Kwang (Department of Biological Science, Myongji University)
  • 지원재 (명지대학교 생명과학정보학부) ;
  • 박다연 (명지대학교 생명과학정보학부) ;
  • 정성철 (한국임업과학연구소) ;
  • 장용근 (한국과학기술원 생명화학공학과) ;
  • 홍순광 (명지대학교 생명과학정보학부)
  • Received : 2011.07.12
  • Accepted : 2011.09.05
  • Published : 2011.12.28

Abstract

Strain A-3, an amylase-producing bacteria, was isolated from coastal seawater near Daecheon in the Republic of Korea. It was seen to possess a single polar flagella and grow well, on ASW-YP agar plates, at temperatures of between $20-37^{\circ}C$. However, it grew more slowly at the temperatures of $15^{\circ}C$ and $40^{\circ}C$. Similarly, it was observed to grow abundantly, in an Artificial Sea Water-Yeast extract-Peptone (ASW-YP) liquid medium, in a pH range of 6-9, but not grow at pHs of 4-5 and a pH of 10. Strain A-3 was noted as being close to Pseudoalteromonas phenolica O-$BC30^T$, Pseudoalteromonas luteoviolacea $NCIMB1893^T$, Pseudoalteromonas rubra $ATCC29570^T$, and Pseudoalteromonas byunsanensis $FR1199^T$, with 98.30%, 97.86%, 97.78%, and 97.25% similarities respectively, in its 16S rRNA sequence. A phylogenetic tree revealed that strain A-3 and P. phenolica O-$BC30^T$ belong to a clade. However, strain A-3 differed from P. phenolica O-$BC30^T$ in relation to a number of physiological characteristics. Strain A-3 exhibited no growth above 5% NaCl concentrations, no utilization of D-glucose, D-mannose, D-maltose, or D-melibose, and no lipase (C-14) activity. All of these properties strongly indicate that strain A-3 is distant from P. phenolica O-$BC30^T$ and thus led us to name it Pseudoalteromonas sp. A-3. Pseudoalteromonas sp. A-3 produces ${\alpha}$-amylase throughout growth. Maximal amylase activities of 144.48 U/mL and 149.20 U/mL were seen at pH 7.0 and $37^{\circ}C$, respectively. Pseudoalteromonas sp. A-3's high, stable production of ${\alpha}$-amylase in addition to its biochemical features, such as alkalitolerance, suggest that it is a good candidate for industrial applications.

Amylase를 생산하는 능력을 갖고 있는 A-3 균주가 대한민국 대천 해변가의 바닷물로부터 분리되었다. A-3 균주는 1개의 polar flagella를 갖으며, Artificial Sea Water-Yeast extract-Peptone(ASW-YP) 한천배지 위에서 배양할 경우 $20-37^{\circ}C$에서 잘 자라지만, $15^{\circ}C$$40^{\circ}C$에서는 천천히 자라는 속성을 보였다. 또한 ASW-YP 액체배지를 사용하는 경우, pH 6-9 범위에서 잘 자라는 반면 pH 4-5, pH 10에서는 전혀 성장하지 못했다. 16S rRNA sequence 분석 결과, A-3 균주는 Pseudoalteromonas phenolica O-$BC30^T$, Pseudoalteromonas luteoviolacea $NCIMB1893^T$, Pseudoalteromonas rubra $ATCC29570^T$, Pseudoalteromonas byunsanensis $FR1199^T$와 각각 98.3, 97.86, 97.78, 97.25%의 similarity를 보였으며, 이를 기초로 한 phylogenetic tree 분석결과, P. phenolica O-$BC30^T$와 같은 clade를 형성하였다. 그러나, A-3 균주는 5% 이상의 NaCl 농도에서 전혀 성장하지 않고, D-glucose, D-mannose, D-maltose, Dmelibiose를 이용하지 못하며, lipase 활성(C-14)이 없는 등 많은 생리학적 특성이 P. phenolica O-$BC30^T$와는 상당히 달랐다. 이러한 생리학적 차이로부터 우리는 A-3 균주가 P. phenolica O-$BC30^T$와는 다른 종으로 판단하고, 이 균주를 Pseudoalteromonas sp. A-3로 명명하였다. Pseudoalteromonas sp. A-3는 배양시기 동안 계속해서 안정적으로 ${\alpha}$-amylase를 생산했으며, 총 amylase 활성은 pH 7과 $37^{\circ}C$에서 최대값을 보였다. 이 amylase 활성은 pH 10까지도 비교적 안정적이었으며, 이러한 alkali-tolerant amylase는 산업적으로도 유용성이 클 것으로 사료된다.

Keywords

References

  1. Burhan, A., U. Nisa, C. Gokhan, C. Omer, A. Ashabil, and G. Osman. 2003. Enzymatic properties of novel thermostable, thermophilic, alkaline and chelator resistant amylase from alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem. 38: 1397-403. https://doi.org/10.1016/S0032-9592(03)00037-2
  2. Chun, J. S., J. H. Lee, Jung, M. J. Kim, S. I. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  3. Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seatle, USA.
  4. Gauthier, G. M. and R. Christen. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45: 755-761. https://doi.org/10.1099/00207713-45-4-755
  5. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic. Acids Symp. Ser. 41: 95-98.
  6. Isnansetyo, A. and Y. Kamei. 2009. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica O-BC30T. Int. J. Antimicrob. Agents. 34: 131-135. https://doi.org/10.1016/j.ijantimicag.2009.02.009
  7. Isnansetyo, A. and Y. Kamei. 2003. Pseudoalteromonas phenolica sp. nov., a novel marine bacterium that produces phenolic anti-methicillin-resistant Staphylococcus aureus substances. Int. J. Syst. Evol. Microbiol. 53: 583-588. https://doi.org/10.1099/ijs.0.02431-0
  8. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.
  9. Kluge, A. G and F. S. Farris. 1969. Quantative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32. https://doi.org/10.2307/2412407
  10. Lu, M., S. Wang, Y. Fang, H. Li, S. Liu, and H. Liu. 2010. Cloning, expression, purification, and characterization of cold-adapted $\alpha$-amylase from Pseudoalteromonas arctica GS230. Protein J. 29: 591-597. https://doi.org/10.1007/s10930-010-9290-0
  11. Lyman, J. and R. H. Fleming. 1940. Composition of seawater. J. Mar. Res. 3: 134-146.
  12. Pandey, A., P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-52. https://doi.org/10.1042/BA19990073
  13. Park, Y. D., K. S. Baik, H. Yi, K. S. Bae, and J. Chun. 2005. Pseudoalteromonas byunsanensis sp. nov., isolated from tidal flat sediment in Korea. Int. J. Syst. Evol. Microbiol. 55: 2519-2523. https://doi.org/10.1099/ijs.0.63750-0
  14. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
  15. Reddy, N. S., A. S. Nimmagada, and R. S. Rao. 2003. An over view of the microbial alpha amylase family. Afri. J. Biotechnol. 2: 645-48.
  16. Saitou, N. and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  17. Sivaramakrishnan, S., D. Gangadharan, K. M. Nampoothiri, C. R. Soccol, and A. Pandey. 2006. $\alpha$-Amylases from microbial sources an overview on recent developments. Food Technol. Biotechnol. 44: 173-84.
  18. Srimathi, S., G. Jayaraman, G. Feller, B. Danielsson, and P. R. Narayanan. 2007. Intrinsic halotolerance of the psychrophilic alpha-amylase from Pseudoalteromonas haloplanktis. Extremophiles 11: 505-515. https://doi.org/10.1007/s00792-007-0062-5
  19. Tao, X., M. S. Jang, K. S. Kim, Z. Yu, and Y. C. Lee. 2008. Molecular cloning, expression and characterization of alphaamylase gene from a marine bacterium Pseudoalteromonas sp. MY-1. Indian J. Biochem. Biophys. 45: 305-309.
  20. Thomson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673