Isolation and Optimized Culture Conditions of Fibrinolytic Enzyme Producing Strain Isolated from Korean Traditional Soybean Sauce

간장 유래 혈전분해 효소 생산 균주의 분리 및 배양학적 특성

  • Baek, Seong-Yeol (Fermentation & Food Processing Division, Department of Agro-food Resource, NAAS, RDA) ;
  • Yun, Hye-Ju (Fermentation & Food Processing Division, Department of Agro-food Resource, NAAS, RDA) ;
  • Park, Heui-Dong (Department of Food Science & Technology, Agro Biotechnology Education Center, Kyungpook National University) ;
  • Yeo, Soo-Hwan (Fermentation & Food Processing Division, Department of Agro-food Resource, NAAS, RDA)
  • 백성열 (농촌진흥청 국립농업과학원 농식품자원부 발효이용과) ;
  • 윤혜주 (농촌진흥청 국립농업과학원 농식품자원부 발효이용과) ;
  • 박희동 (경북대학교 농업생명과학대학 식품공학과) ;
  • 여수환 (농촌진흥청 국립농업과학원 농식품자원부 발효이용과)
  • Received : 2011.10.13
  • Accepted : 2011.11.29
  • Published : 2011.12.28

Abstract

Bacterial strains exhibiting fibrinolytic activity were screened from traditional Korean soybean sauce. The Fibrinolytic activities of the various isolated microorganism were further examined and the superior strain YJ11-21 was selected for further analyses. Gene sequence analysis of 16S rDNA of the YJ11-21 strain revealed Bacillus licheniformis. Optimal culture conditions were investigated in order to maximize the production of the fibrinolytic enzyme by YJ11-21. Amongst the carbon sources tested, glucose was the most effective for enzyme production and amongst the nitrogen sources tested, yeast extract was seen to be the most effective. A one percent addition of NaCl to the medium resulted in the highest fibrinolytic activity. Interestingly, a 10% addition of NaCl resulted in a high activity together with a high cell growth rate. Therefore, YJ11-21 is speculated of being a halotolerant. The optimum pH and temperature for enzyme production were a pH of 9.0 and $30^{\circ}C$, respectively.

전통발효식품인 재래간장에서 fibrinolytic enzyme를 생산하는 미생물을 분리하였고 산업적으로 활용하기 위해 분리된 미생물 중 fibrinolytic enzyme 활성이 우수한 YJ11-21 균주를 선발하였다. YJ11-21을 분자수준에서 16S rDNA 유전자 염기서열을 분석한 결과, Bacillus licheniformis로 동정되었다. Fibrinolytic enzyme 생산을 위한 최적 배양조건으로서 탄소원은 glucose, 질소원은 yeast extract를 첨가하였을 때 가장 높게 나타났다. 그리고 1% NaCl를 첨가한 배지에서 혈전용해 효소활성이 가장 높게 나타났고, 10% NaCl에서도 높은 효소활성과 생장률 또한 양호하여 YJ11-21는 내염성균으로 추정된다. YJ11-21를 $30^{\circ}C$에서 배양시 가장 높은 효소 활성과, 초발 pH 5-10까지 안정한 효소활성을 보였다. 그리고 pH 9에서 가장 높은 혈전용해 효소활성과 균주의 생장률이 나타났다.

Keywords

References

  1. Astrup, T. and Mullertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Archives Biochem. Biophysics. 40: 346-351. https://doi.org/10.1016/0003-9861(52)90121-5
  2. Choi, K. J. 1995. Separation of Bacillus sp. and changes of $NH_{2}$-N, NH3-N and protease activity in Chonggukchang meju adding with mugwort extract. Kon-Kuk Univ. Master's Degree Thesis.
  3. Choi, W. A., J. W. Lee, K. H. Lee, and S. Park. 1998. Effects of environmental and nutritional conditions on fibrinolytic enzyme production from Bacillus subtilis BK-17 in flask culture. Kor. J. Biotechnol. Bioeng. 13: 491-495.
  4. Chung, K. H. and D. S. Kim. 1992. Fibrinolytic and cogulation activies of Korean snake venoms. Kor. Biochem. J. 25: 696-701.
  5. Fujita, M., K. Hong, Y. Ito, S. Misama, N. Takeuchi, K. Kariya, and S. Nishimuro. 1995. Transport of nattokinase across the rat intestinal tract. Biol. Pharm. Bulletin., 18: 1194-1196. https://doi.org/10.1248/bpb.18.1194
  6. Fujita, M., K. Nomura, K. Hong, Y. Ito, A. Asada, and S. Nishimuro. 1993. purification and characterization of a strong fibrinolytic enzyme(nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Comm. 197: 1340-1347. https://doi.org/10.1006/bbrc.1993.2624
  7. Jang, S. A., M. H. Kim, M. S. Lee, and M. J. Lee. 1999. Isolation and Identification of fibrinolytic enzyme producing strain from shrimp Jeot-Gal, a tiny salted shrimps, and optimum conditions of enzyme production. Korean J. Food Sci. Technol. 31: 1648-1653.
  8. Jeong, Y. K., W. S. Yang, J. O. Kang, I. S. Kong, and J. O. Kim. 1995. Fibrinolysis of fermented kimchi. Korean. J. Life Science. 5: 203-210.
  9. Kalebina, T. S., N. R. Galina, I. O. Selyakh, O. M. Khodova,AND I. S. Kulaev. 1988. Serine proteinase from Bacillus brevis. Apple. Microbiol. Biotech. 28: 531-537.
  10. Kil, J. O., G. N. Kim, and I. Park. 1998. Production and characterization of fibrinolytic enzyme: optimal condition for production of the enzyme from Bacillus sp. KP-6408 isolated from Chungkook-jang. J. Korean Soc. Food. Nutr. 27: 51-56.
  11. Kim, Y. T. 1995. Characteristics of fibrinolytic enzyme produced by Bacillus sp. Isolated from Chungkookjang. Sejong Univ. Doctoral Degree Thesis.
  12. Kim, Y. T., W. K. Kim, and H. I. Oh. 1995. Screening and identification of the fibrinolytic bacterial strain from Chungkook- jang. Kor. J. Appl. Microbial. Biotechnol. 23: 1-5.
  13. Lee, E. G., E. H. Park, H. H. Lee, H. H. Hyun. 1996. Isolation and characterization of pseudomonas sp. producing alkaline protease. Kor. J. Microbiol. 22: 289-297.
  14. Lee, S. K., S. Heo, D. H. Bae, and K. H. Choi. 1998. Medium optimization for fibrinolytic enzyme production by Bacillus subtilis KCK-7 isolated from Korean traditional Chungkookjang. Kor. J. Appl. Microbiol. Biotechnol. 26: 226-231.
  15. Lee, S. K., S. Seok, H. K. Joo, and K. B. Song. 1999. The study on isolation of fibrinolytic bacteria from soybean paste. J. Korean Soc. Agric. Chem. Biotechnol. 42: 6-11.
  16. Lee, S. S., S. M. Kim, U. Y. Park, H. Y. Kim, and I. S. Shin. (2002) Studies on proteolytic and fibrinolytic activity of Bacillus subtilis JM-3 isolated from Anchovy sauce. Korean J. Food Sci. Technol. 34: 283-289.
  17. Mah, J.H., K. S. Kim, J. H. Park, M. W. Byun, Y. B. Kim, and H. J. Hwang. 2001. Bacteriocin with a broad antimicrobial spectirum, produced by Bacillus sp. isolated from Kimchi. Kor. J. Microbiol. Biotechnol. 11: 577-584.
  18. Mihara, H., N. Nakajima, and H. Sumi. 1993. Characterization of potent fibrinolytic enzyme in earthworn, Lumbricus rubellus. Biosci. Biotech. Biochem. 57: 1730.
  19. Nakamura, T., Y. Yamagota, and E. Ichishima. 1992. Nucleotide sequence of the subtilisin NTA gene, aprN, of Bacillus subtilis(natto). Biasci. Biotech. Biochem. 56: 1869-1871. https://doi.org/10.1271/bbb.56.1869
  20. Noh, K. A., D. H. Kim, N. S. Choi, and S. H. Kim. 1999. Isolation of fibrinolytic enzyme producing strain from kimchi. Kor. J. Food Sci. Technol. 31: 219-223.
  21. Ok, M. and Y. S. Cho. 2005. Screening of fibrinolytic enzyme producing from microprganisms in korea fermented soybean and optimum conditions of enzyme production. Korean J. Food Preserv. 12: 643-649.
  22. Park, Y. D., J. W. kim, B. G. Min, J. W. Seo, and J. M. Jeong. 1998. Rapid purification and biochemical characteristics of Lumbrokinase from earthworm for use as a fibrinolytic agent. Biotechnol Lett. 20: 169-172. https://doi.org/10.1023/A:1005384625974
  23. Ra, K.S., S. H. Oh, J. M. Kim, and H. J. Suh. 2004. Isolation of fibrinolytic enzyme and $\beta$-glucosidase producing strains from Doenjang and optimum conditions of enzyme production. J. Kor. Soc. Food Sci. Nutr. 33: 439-442. https://doi.org/10.3746/jkfn.2004.33.2.439
  24. Ryu, B. H. 2003. Development of functional Doenjang for antioxidative and fibrinolytic activity. Kor. J. Life Sci. 13: 559-568. https://doi.org/10.5352/JLS.2003.13.5.559
  25. Saitou, N. and M. Nei. 1987. The neighbor joining-methods: a new method for reconstructig phylogenetic trees. Mol. Biol. Evol 4: 406-425
  26. Sasaki, K., S. Moriyama, Y. Tanaka, H. Sumi, N. Toki, and K. C. Robbins. 1985. The transport of 125I-labeled human high molecular weight urokinase across the intestinal tract in a dog model with stimulation of synthesis and/or release of plasminogen activators. Blood 66: 69-75.
  27. Shon, B. H., S. C. Kwon, and K. H. Oh. 2008. Fibrinolytic activity and proteomic analysis of Bacillus licheniformis HK-12 isolated from Chungkook-jang. Korean J. Biotechnol. Bioeng. 23: 251-256.
  28. Sumi, H., M. Maruyama, T. Yoneta, and H. Mihara. 1983. Activation of plasma fibrinolysis after intrarectal administration of high molecular weight urokinase and its derivative. Acta Haematol. 70: 289-295. https://doi.org/10.1159/000206755
  29. Toki, N., H. Sumi, K. Sasaki, I. Boreisha, and K. C. Robbins. 1985. Transport of urokinase across the intestinal tract of normal human subjects with stimulation of synthsis and/or release of urokinase-type protein. J. Clin. Invest. 75: 1212- 1222. https://doi.org/10.1172/JCI111818
  30. Wun, T. C., W. D. Schleuning, and E. Reich. 1982. Isolation and characterization of urokinase from human plasma. J. Biol. Chem. 257: 3276-3283.
  31. Yoo, S. K., W. H. Cho, S. M. Kang, and S. H. Lee. 1999. Isolation and identification of microorganisms in Korean traditional soybean paste and soybean sauce. Kor. J. Appl. Microbiol. Biotechnol. 27: 113-117.
  32. Yoshinori, M., H. K. W. Ada, and J. Bo. .2005. Fibrinolytic enzymes in asian traditional fermented foods. Food Research International. 38: 243-250. https://doi.org/10.1016/j.foodres.2004.04.008
  33. Yun, G. H., E. T. Lee, and S. D. Kim. 2003. Purification and characterization of a fibrinolytic enzyme produced from Bacillus amyloliquefaciens K42 isolated from Korean soy sauce. 31: 284-291