DOI QR코드

DOI QR Code

Cell Death Mediated by Vibrio parahaemolyticus Type III Secretion System 1 Is Dependent on ERK1/2 MAPK, but Independent of Caspases

  • Yang, Yu-Jin (Department of Environmental Medical Biology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Lee, Na-Kyung (Department of Environmental Medical Biology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Lee, Na-Yeon (Department of Environmental Medical Biology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Lee, Jong-Woong (Department of Environmental Medical Biology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Park, Soon-Jung (Department of Environmental Medical Biology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine)
  • Received : 2011.04.27
  • Accepted : 2011.06.13
  • Published : 2011.09.28

Abstract

Vibrio parahaemolyticus, which causes gastroenteritis, wound infection, and septicemia, has two sets of type III secretion systems (TTSS), TTSS1 and TTSS2. A TTSS1-deficient vcrD1 mutant of V. parahaemolyticus showed an attenuated cytotoxicity against HEp-2 cells, and a significant reduction in mouse lethality, which were both restored by complementation with the intact vcrD1 gene. V. parahaemolyticus also triggered phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 and ERK1/2 in HEp-2 cells. The ability to activate p38 and ERK1/2 was significantly affected in a TTSS1-deficient vcrD1 mutant. Experiments using MAPK inhibitors showed that p38 and ERK1/2 MAPKs are involved in V. parahaemolyticus-induced death of HEp-2 cells. In addition, caspase-3 and caspase-9 were processed into active forms in V. parahaemolyticus-exposed HEp-2 cells, but activation of caspases was not essential for V. parahaemolyticus-induced death of HEp-2 cells, as shown by both annexin V staining and lactate dehydrogenase release assays. We conclude that secreted protein(s) of TTSS1 play an important role in activation of p38 and ERK1/2 in HEp-2 cells that eventually leads to cell death via a caspase-independent mechanism.

Keywords

References

  1. Akeda, Y., K. Okayama, T. Kimura, R. Dryselius, T. Kodama, K. Oishi, T. Iida, and T. Honda. 2009. Identification and characterization of a type III secretion associated chaperone in the type III secretion system 1 of Vibrio parahaemolyticus. FEMS Microbiol. Lett. 296: 18-25. https://doi.org/10.1111/j.1574-6968.2009.01607.x
  2. Belmorkhtar, C. A., J. Hillion, and E. Segal-Bendirdjian. 2001. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 20: 3354-3362. https://doi.org/10.1038/sj.onc.1204436
  3. Bhattacharjee, R. N., K. Park, Y. Kumagai, K. Okada, M. Yamamoto, S. Uematsu, et al. 2006. VP1686, a Vibrio type III secretion protein, induces Toll-like receptor-independent apoptosis in macrophage through NF-kB inhibition. J. Biol. Chem. 281: 36897-36904. https://doi.org/10.1074/jbc.M605493200
  4. Burdette, D. L., J. Seemann, and K. Orth. 2009. Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol. Microbiol. 73: 639-649. https://doi.org/10.1111/j.1365-2958.2009.06798.x
  5. Burdette, D. L., M. L. Yarbrough, and K. Orth. 2009. Not without cause: Vibrio parahaemolyticus induces acute autophagy and cell death. Autophagy 5: 100-102. https://doi.org/10.4161/auto.5.1.7264
  6. Burdette, D. L., M. L. Yarbrough, A. Orvedahl, C. J. Gilpin, and K. Orth. 2008. Vibrio parahaemolyticus orchestrates a multifaceted host cell infection by induction of autophagy, cell rounding, and then cell lysis. Proc. Natl. Acad. Sci. USA 105: 12497-12502. https://doi.org/10.1073/pnas.0802773105
  7. Casselli, T., T. Lynch, C. M. Southward, B. W. Jones, and R. DeVinney. 2008. Vibrio parahaemolyticus inhibition of Rho GTPase activation requires a functional chromosome I type III secretion system. Infect. Immun. 76: 2202-2211. https://doi.org/10.1128/IAI.01704-07
  8. Daniels, N. A., L. MacKinnon, R. Bishop, S. Altekruse, B. Ray, R. M. Hammond, et al. 2000. Vibrio parahaemolyticus infections in the United States, 1973-1998. J. Infect. Dis. 181: 1661-1666. https://doi.org/10.1086/315459
  9. Hiyoshi, H., T. Kodama, T. Iida, and T. Honda. 2010. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect. Immun. 78: 1772-1780. https://doi.org/10.1128/IAI.01051-09
  10. Honda, T. and T. Iida. 1993. The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct hemolysin and related hemolysin. Rev. Med. Microbiol. 4: 106-113. https://doi.org/10.1097/00013542-199304000-00006
  11. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379-433.
  12. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1998. Improved broad-host-range plasmids for DNA cloning in Gramnegative bacteria. Gene 70: 191-197.
  13. Kyosseva, S. V. 2004. Mitogen-activated protein kinase signaling. Int. Rev. Neurobiol. 59: 201-210.
  14. Liverman, A. D., H. C. Cheng, J. E. Trosky, D. W. Leung, M. L. Yarbrough, D. L. Burdette, et al. 2007. Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc. Natl. Acad. Sci. USA 104: 17117-17122. https://doi.org/10.1073/pnas.0703196104
  15. Makino, K., K. Oshima, K. Kurokawa, K. Yokoyama, T. Uda, K. Tagomori, et al. 2003. Genome sequence of Vibrio parahaemolyticus: A pathogenic mechanism distinct from that of V. cholerae. Lancet 361: 743-749. https://doi.org/10.1016/S0140-6736(03)12659-1
  16. Miller, V. L. and J. J. Mekalonos. 1988. A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170: 2575-2583. https://doi.org/10.1128/jb.170.6.2575-2583.1988
  17. Milton, D. L., A. Norqvist, and H. Wolf-Watz. 1992. Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarium. J. Bacteriol. 174: 7235-7244. https://doi.org/10.1128/jb.174.22.7235-7244.1992
  18. Morris Jr., J. G. 2003. Cholera and other types of vibriosis: A story of human pandemics and oysters on the half shell. Clin. Infect. Dis. 37: 272-280. https://doi.org/10.1086/375600
  19. Naim, R., I. Yanagihara, T. Iida, and T. Honda. 2001. Vibrio parahaemolyticus thermostable direct hemolysin can induce an apoptotic cell death in Rat-1 cells from inside and outside of the cells. FEMS Microbiol. Lett. 195: 237-244. https://doi.org/10.1111/j.1574-6968.2001.tb10527.x
  20. Nair, G. B., T. Ramamurthy, S. K. Bhattacharya, B. Dutta, Y. Takeda, and D. A. Sack. 2007. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin. Microbiol. Rev. 20: 39-48. https://doi.org/10.1128/CMR.00025-06
  21. Ono, T., K. S. Park, M. Ueta, T. Iida, and T. Honda. 2006. Identification of proteins secreted via Vibrio parahaemolyticus type III secretion system 1. Infect. Immun. 74: 1032-1042. https://doi.org/10.1128/IAI.74.2.1032-1042.2006
  22. Orth, K., L. E. Palmer, Z. Q. Bao, S. Stewart, A. E. Rudolph, J. B. Bliska, and J. E. Dixon. 1999. Inhibition of the mitogenactivated protein kinase kinase superfamily by a Yersinia effector. Science 285: 1920-1923. https://doi.org/10.1126/science.285.5435.1920
  23. Park, K. S., T. Ono, M. Rokuda, M. H. Jang, K. Okada, T. Iida, and T. Honda. 2004. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72: 6659-6665. https://doi.org/10.1128/IAI.72.11.6659-6665.2004
  24. Raimondi, F., J. P. Kao, C. Fiorentini, A. Fabbri, G. Donelli, N. Gasparini, et al. 2000. Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in in vitro systems. Infect. Immun. 68: 3180-3185. https://doi.org/10.1128/IAI.68.6.3180-3185.2000
  25. Tang, G. Q., T. Iida, K. Yamamoto, and T. Honda. 1995. $Ca^{2+}$-independent cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin (TDH) on Intestine 407, a cell line derived from human embryonic intestine. FEMS Microbiol. Lett. 134: 233-238. https://doi.org/10.1111/j.1574-6968.1995.tb07943.x
  26. Tang, G. Q., T. Iida, K. Yamamoto, and T. Honda. 1997. Analysis of functional domains of Vibrio parahaemolyticus thermostable direct hemolysin using monoclonal antibodies. FEMS Microbiol. Lett. 150: 289-296. https://doi.org/10.1016/S0378-1097(97)00133-X
  27. Takahashi, A., T. Iida, R. Naim, Y. Naykaya, and T. Honda. 2001. Chloride secretion induced by thermostable direct hemolysin of Vibrio parahaemolyticus depends on colonic cell maturation. J. Med. Microbiol. 50: 870-878. https://doi.org/10.1099/0022-1317-50-10-870
  28. Troisfontaines, P. and C. R. Cornelis. 2005. Type II secretion: More systems than you think. Physiology 20: 326-339. https://doi.org/10.1152/physiol.00011.2005
  29. Trosky, J. E., Y. Li, S. Mukherjee, G. Keitany, H. Ball, and K. Orth. 2007. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J. Biol. Chem. 282: 34299-34305. https://doi.org/10.1074/jbc.M706970200
  30. Trosky, J. E., S. Mukherjee, D. L. Burdette, M. Roberts, L. McCarter, R. M. Siegel, and K. Orth. 2004. Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J. Biol. Chem. 279: 51953-51957. https://doi.org/10.1074/jbc.M407001200
  31. Yarbrough, M. L., Y. Li, L. N. Kinch, N. V. Grishin, H. L. Ball, and K. Orth. 2009. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323: 269-272. https://doi.org/10.1126/science.1166382

Cited by

  1. Role of VcrD1 protein in expression and secretion of flagellar components in Vibrio parahaemolyticus vol.197, pp.3, 2011, https://doi.org/10.1007/s00203-014-1069-9
  2. Characterization of V. cholerae T3SS‐dependent cytotoxicity in cultured intestinal epithelial cells vol.18, pp.12, 2011, https://doi.org/10.1111/cmi.12629