DOI QR코드

DOI QR Code

Enrichment of $CO_2$-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment

  • Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University) ;
  • Jung, Il-Lae (Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Received : 2011.01.21
  • Accepted : 2011.03.27
  • Published : 2011.06.28

Abstract

Bacterial assimilation of $CO_2$ into stable biomolecules using electrochemical reducing power may be an effective method to reduce atmospheric $CO_2$ without fossil fuel combustion. For the enrichment of the $CO_2$-fixing bacteria using electrochemical reducing power as an energy source, a cylinder-type electrochemical bioreactor with a built-in anode compartment was developed. A graphite felt cathode modified with neutral red (NR-graphite cathode) was used as a solid electron mediator to induce bacterial cells to fix $CO_2$ using electrochemical reducing power. Bacterial $CO_2$ consumption was calculated based on the variation in the ratio of $CO_2$ to $N_2$ in the gas reservoir. $CO_2$ consumed by the bacteria grown in the electrochemical bioreactor (2,000 ml) reached a maximum of approximately 1,500 ml per week. Time-coursed variations in the bacterial community grown with the electrochemical reducing power and $CO_2$ in the mineral-based medium were analyzed via temperature gradient gel electrophoresis (TGGE) of the 16S rDNA variable region. Some of the bacterial community constituents noted at the initial time disappeared completely, but some of them observed as DNA signs at the initial time were clearly enriched in the electrochemical bioreactor during 24 weeks of incubation. Finally, Alcaligenes sp. and Achromobacter sp., which are capable of autotrophically fixing $CO_2$, were enriched to major constituents of the bacterial community in the electrochemical bioreactor.

Keywords

References

  1. Alber, B., M. Olinger, A. Reider, D. Kockelkorn, B. Jobst, M. Hügler, and G. Fuchs. 2006. Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archeal Metallosphaera and Sulfolobus spp. J. Bacteriol. 188: 8551-8559. https://doi.org/10.1128/JB.00987-06
  2. Belay, A., Y. Ota, K. Miyakawa, and H. Shimamatsu. 1993. Current knowledge on potential health benefits of Spirulina. J. Appl. Phycol. 5: 235-341. https://doi.org/10.1007/BF00004024
  3. Bowien, B., U. Windhövel, J.-G. Yoo, R. Bednarski, and B. Kusian. 1990. Genetic of $CO_2$ fixation in the chemoautotroph Alcaligenes eutrophus. FEMS Microbiol. Lett. 87: 445-450. https://doi.org/10.1111/j.1574-6968.1990.tb04951.x
  4. Bowien, B. and G. Schlegel. 1981. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu. Rev. Microbiol. 35: 405-452. https://doi.org/10.1146/annurev.mi.35.100181.002201
  5. Campbell 3rd, J., S. E. Stevens Jr., and D. L. Balkwill. 1982. Accumulation of poly-beta-hydroxybutyrate in Spirulina platensis. J. Bacteriol. 149: 361-363.
  6. Cheung, P. Y. and B. K. Kinkle. Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soil. Appl. Environ. Microbiol. 67: 2222-2229.
  7. Cogdell, R. J., N. W. Isaacs, T. D. Howard, K. McLuskey, N. J. Fraser, and S. M. Prince. 1999. How photosynthetic bacteria harvest solar energy (minireview). J. Bacteriol. 181: 3869-3879.
  8. Deng, M. D. and J. R. Coleman. 1999. Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65: 523-528.
  9. Eichner, C. A., R. W. Erd, K. H. Timmis, and I. Wagner-Dobler. 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl. Environ. Microbiol. 65: 102-109.
  10. Freter, A. and B. Bowien. 1994. Identification of a novel gene, aut, involved in autotrophic growth of Alcaligenes eutrophus.J. Bacteriol. 176: 5401-5408. https://doi.org/10.1128/jb.176.17.5401-5408.1994
  11. Friedrich, C. 1982. Derepression of hydrogenase during limitation of electron donor and derepression of ribulosebiophosphate carboxylase during carbon limitation of Alcaligenes eutrophus. J. Bacteriol. 149: 203-210.
  12. Hamilton, R. R., R. H. Burris, P. W. Wilson, and C. H. Wang. 1965. Pyruvate metabolism, carbon dioxide assimilation, and nitrogen fixation by an Achromobacter species. J. Bacteriol. 89: 647-653.
  13. Jeon, B. Y., H. N. Seo, S. W. Kang, and D. H. Park. 2010. Effect of electrochemical redox reaction on biochemical ammonium oxidation and chemical nitrite oxidation. J. Microbiol. Biotechnol. 20: 485-493.
  14. Jeon, B. Y., S. Y. Kim, Y. K. Park, and D. H. Park. 2009. Enrichment of hydrogenotrophic methanogens in coupling with methane production using electrochemical bioreactor. J. Microbiol. Biotechnol. 19: 1665-1671.
  15. Jeon, B. Y., T. S. Hwang, and D. H. Park. 2009. Electrochemical and biochemical analysis of ethanol fermentation of Zymomonas mobilis KCCM11336. J. Microbiol. Biotechnol. 19: 666-674.
  16. Kang, H. S., B. K. Na, and D. H. Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of $NAD^+$/NADH. Biotech. Lett. 29: 1277-1280. https://doi.org/10.1007/s10529-007-9385-7
  17. Lee, W. J. and D. H. Park. 2009. Electrochemical activation of nitrate reduction to nitrogen by Ochrobactrum sp. G3-1 using a noncompartmented electrochemical bioreactor. J. Microbiol. Biotechnol. 19: 836-844.
  18. Leadbeater, L. and B. Bowien. 1984. Control of autotrophic carbon assimilation in Alcaligenes eutrophus by inactivation and reaction of phosphoribulokinase. J. Bacteriol. 57: 95-99. https://doi.org/10.1111/j.1365-2672.1984.tb02361.x
  19. McMurry, J. 2008. Organic Chemistry, pp. 618, 766-767. 7th Ed. Thomson Learning Inc., Singapore.
  20. Madigan, M. T., J. M Martinko, P. V. Dunlap, and D. P. Clark. 2009. Brock Biology of Microorganisms, pp. 401-412. 12th Ed. Pearson, San Francisco, CA.
  21. Moat, A. G., J. W. Foster, and M. P. Spector. 2002. Microbial Physiology, pp. 434-444. 4th Ed. Wiley-Liss, New York, NY.
  22. Ohmura, N., K. Sasaki, N. Matsumoto, and H. Saiki. 2002. Anaerobic respiration using $Fe^{3+}$, $S^o$, and $H_2$in the chemoautotrophic bacterium Acidithiobacillus ferroxidans. J. Bacteriol. 184: 2081- 2087. https://doi.org/10.1128/JB.184.8.2081-2087.2002
  23. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410.
  24. Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292-1297. https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  25. Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-1917.
  26. Ramos-Vera, W. H., I. A. Berg, and G. Fuchs. 2009. Autotrophic carbon dioxide assimilation in Thermoproteales revisited. J. Bacteriol. 191: 4286-4297. https://doi.org/10.1128/JB.00145-09
  27. Reutz, I., P. Schobert, and B. Bowien. 1982. Effect of phosphoglycerate mutase deficiency on heterotrophic and autotrophic carbon metabolism of Alcaligenes eutrophus. J. Bacteriol. 151: 8-14.
  28. Schouten, S., M. Strous, M. M. M. Kuypers, W. I. C. Rijpstra, M. Bass, C. J. Schubert, M. S. M. Jetten, and J. S. S. Damsté. 2004. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 70: 3785-3788. https://doi.org/10.1128/AEM.70.6.3785-3788.2004
  29. Small, F. J. and S. A. Ensign. 1995. Carbon dioxide fixation in the metabolism of propylene and propylene oxide by Xanthobacter strain Py2. J. Bacteriol. 177: 6170-6175. https://doi.org/10.1128/jb.177.21.6170-6175.1995
  30. Stead, D. E. 1992. Grouping of plant pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42: 281-295. https://doi.org/10.1099/00207713-42-2-281
  31. Tabita, F. R. 1988. Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Rev. 52: 155-189.
  32. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100-180.
  33. Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61. https://doi.org/10.1099/00221287-111-1-1
  34. Radmer, R. J. 1996. Algal diversity and commercial algal products. BioScience 46: 263-270. https://doi.org/10.2307/1312833
  35. Riccardi, G., S. Sora, and O. Ciferri. 1981. Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis. J. Bacteriol. 149: 361-363.
  36. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 693-703.

Cited by

  1. Metabolic Roles of Carotenoid Produced by Non-Photosynthetic Bacterium Gordonia alkanivorans SKF120101 vol.22, pp.11, 2011, https://doi.org/10.4014/jmb.1207.07038
  2. Effects of H2 and electrochemical reducing power on metabolite production by Clostridium acetobutylicum KCTC1037 vol.78, pp.3, 2011, https://doi.org/10.1080/09168451.2014.882743
  3. Anoxic-biocathode microbial desalination cell as a new approach for wastewater remediation and clean water production vol.81, pp.3, 2011, https://doi.org/10.2166/wst.2020.134