DOI QR코드

DOI QR Code

Preparation of Branched Dextran Microspheres of Soluble Interferon-alpha and its Activity In Vitro and In Vivo

  • Hong, Hua (Department of Medical Genetic Engineering, Keimyung University School of Medicine) ;
  • Jo, Jeong-Rang (Department of Medical Genetic Engineering, Keimyung University School of Medicine) ;
  • Yeon, Ji-Hyeon (Department of Biotechnology, Chungju National University) ;
  • Hong, Jun-Tack (Department of Food Science and Biotechnology, Joongbu University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University) ;
  • Yoo, Sun-Kyun (Department of Food Science and Biotechnology, Joongbu University) ;
  • Jang, Byeong-Churl (Department of Medical Genetic Engineering, Keimyung University School of Medicine)
  • Received : 2010.07.29
  • Accepted : 2010.11.15
  • Published : 2011.02.28

Abstract

The study objective was to prepare biodegradable branched dextran microspheres encapsulated with His-tagged interferon-alpha (BDM-hIFN-${\alpha}$) and evaluate its activity in vitro and in vivo. The glycidyl methacrylate derivatized dextrans (Dex-GMA) as precursor was primarily synthesized by substituting hydroxyl groups of either the branched or linear type of dextran with GMA. Dex-GMA microspheres loaded with hIFN-${\alpha}$ was then prepared by the water-in-water emulsion technique. In vitro release and Western blotting experiments demonstrated the retained activity of hIFN-${\alpha}$ released from branched dextran microspheres at 24 h by inducing phosphorylation of signal transducer and activator transcription-1 (STAT-1), a down-stream effector of IFN-${\alpha}$, in HepG2 cells. Animal data further revealed a peak of plasma levels of IFN-${\alpha}$ in rats injected intravenously with BDM-hIFN-${\alpha}$ at 10 min post-injection, but a sharp decline at 2 h. High plasma levels of neopterin, a plasma protein induced by IFN-${\alpha}$, were also detected in rats injected with BDM-hIFN-${\alpha}$ at 10 min post-injection. Notably, plasma levels of neopterin remained high at 4 h, but largely declined thereafter.

Keywords

References

  1. Abuchowski, A. A., T. van Es, N. C. Palczuk, and F. F. Davis. 1977. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 252: 3578-3581.
  2. Beilharz, M. W. 2000. Therapeutic potential for orally administered type 1 interferons. Pharm. Sci. Technol. Today 3: 193-197. https://doi.org/10.1016/S1461-5347(00)00264-9
  3. Chen, F. M., Z. F. Wu, Q. T. Wang, H. Wu, Y. J. Zhang, X. Nie, and Y. Jin. 2005. Preparation of recombinant human bone morphogenetic protein-2 loaded dextran-based microspheres and their characteristics. Acta Pharmacol. Sin. 26: 1093-1103. https://doi.org/10.1111/j.1745-7254.2005.00180.x
  4. Chourasia, M. K. and S. K. Jain. 2004. Polysaccharides for colon targeted drug delivery. Drug Deliv. 11: 129-148. https://doi.org/10.1080/10717540490280778
  5. Caliceti, P. and F. M. Veronese. 2003. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 55: 1261-1277. https://doi.org/10.1016/S0169-409X(03)00108-X
  6. Franssen, O., L. Vandervennet, P. Roders, and W. E. Hennink. 1999. Degradable dextran hydrogels: Controlled release of a model protein from cylinders and microspheres. J. Control. Release 60: 211-221. https://doi.org/10.1016/S0168-3659(99)00074-7
  7. Fu, K., D. W. Pack, A. M. Klibanov, and R. Langer. 2000. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 171: 100-106.
  8. Goh, K. C., S. J. Haque, and B. R. Williams. 1999. p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons. EMBO J. 18: 5601-5608. https://doi.org/10.1093/emboj/18.20.5601
  9. Heathcote, J. and S. Zeuzem. 2004. Pegylated interferon monotherapy for chronic hepatitis C. Semin. Liver Dis. 24: 39-45. https://doi.org/10.1055/s-2004-832927
  10. Jung, K.-H., Y. J. Lee, J.-H. Yeon, S. K. Yoo, and B.-C. Jang. 2009. Improvement of soluble recombinant interferon-$\alpha$ expression by methyl $\alpha$-$_{D}$-glucopyranoside in araBAD promoter system of Escherichia coli. Biotechnol. Bioprocess Eng. 14: 274-280. https://doi.org/10.1007/s12257-008-0270-6
  11. Jung, K.-H., Y. S. Park, J. H. Yeon, S. H. Kim, S. K. Yoo, and B. C. Jang. 2008. Improving the yield of soluble 6${\times}$His-tagged interferon-$\alpha$ via the addition of repressor of the araBAD promoter system in Escherichia coli. Biotechnol. Lett. 30: 1577-1582. https://doi.org/10.1007/s10529-008-9741-2
  12. Kojima, T., M. Hashida, S. Muranishi, and H. J. Sezaki. 1980. Mitomycin C dextran conjugate: A novel high molecular weight pro-drug of mitomycin C. J. Pharm. Pharmacol. 32: 30-34. https://doi.org/10.1111/j.2042-7158.1980.tb12840.x
  13. Lee, Y. J. and K.-H. Jung. 2007. Modulation of the tendency towards inclusion body formation of recombinant protein by the addition of glucose in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 17: 1898-1903.
  14. Lim, H. K., S. W. Lee, K. Y. Kang, T. G. Park, and K.-H. Jung. 2002. Sustained release of PEGylated G-CSF from PLGA microsphere. Kor. J. Biotechnol. Bioeng. 17: 33-37.
  15. Lu, B., J. F. Feng, and X. C. Yang. 2004. Human recombinant interferon-a2a polybutylcyanoacrylate sustained release lyophilized nanospheres for liver-targeting. J. Sichuan Univ. (Med. Sci. Edi.). 35: 1-4.
  16. Matsukawa, Y., S. Nishinarita, T. Horie, M. Moriyama, N. Tanaka, Y. Arakawa, S. Kamei, M. Matsuura, and T. Kojima. 2000. Serum concentration of interferon-alpha: A comparison between once-a-day and twice-a-day administration. Int. J. Clin. Pharmacol. Res. 20: 17-19.
  17. Matthews, S. J. and C. McCoy. 2004. Peginterferon alfa-2a: A review of approved and investigational uses. Clin. Ther. 26: 991-1025. https://doi.org/10.1016/S0149-2918(04)90173-7
  18. Neumann, A. U., N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J. Layden, and A. S. Perelson. 1998. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282: 103-107. https://doi.org/10.1126/science.282.5386.103
  19. Quiroga, J. A., J. Martin, M. Pardo, and V. Carreno. 1994. Serum levels of soluble immune factors and pathogenesis of chronic hepatitis C, and their relation to therapeutic response to interferon-alpha. Dig. Dis. Sci. 39: 2485-2496. https://doi.org/10.1007/BF02087671
  20. Roberts, M. J., M. D. Bentley, and J. M. Harris. 2002. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54: 459-476. https://doi.org/10.1016/S0169-409X(02)00022-4
  21. Sanchez, A., M. Tobio, L. Gonzalez, A. Fabra, and M. J. Alonso. 2003. Biodegradable micro- and nanoparticles as longterm delivery vehicles for interferon-alpha. Eur. J. Pharm. Sci. 18: 221-229. https://doi.org/10.1016/S0928-0987(03)00019-8
  22. Schmeisser, H., P. Kontsek, D. Esposito, W. Gillette, G. Schreiber, and K. C. Zoon. 2006. Binding characteristics of IFN-alpha subvariants to IFNAR2-EC and influence of the 6- histidine tag. J. Interferon Cytokine Res. 26: 866-876. https://doi.org/10.1089/jir.2006.26.866
  23. Shenderova, A., T. G. Burke, and S. P. Schwendeman. 1999. The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm. Res. 16: 241-248. https://doi.org/10.1023/A:1018876308346
  24. Shepherd, J., H. Brodin, C. Cave, N. Waugh, A. Price, and J. Gabbay. 2004. Pegylated interferon alpha-2a and -2b in combination with ribavirin in the treatment of chronic hepatitis C: A systematic review and economic evaluation. Health Technol. Assess. 8: 1-125.
  25. Vandelli, M. A., F. Rivasi, P. Guerra, F. Forni, and R. Arletti. 2001. Gelatin microspheres crosslinked with $_{D,L}$-glyceraldehyde as a potential drug delivery system: Preparation, characterisation, in vitro and in vivo studies. Int. J. Pharm. 215: 175-184. https://doi.org/10.1016/S0378-5173(00)00681-5
  26. Vyas, S. P., M. Rawat, A. Rawat, S. Mahor, and P. N. Gupta. 2006. Pegylated protein encapsulated multivesiclar liposomes: A novel approach for sustained release of interferon a. Drug Dev. Ind. Pharm. 32: 699-707. https://doi.org/10.1080/03639040500528954
  27. Wang, Y. S., S. Youngster, M. Grace, J. Bausch, R. Bordens, and D. F. Wyss. 2002. Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Deliv. Rev. 54: 547-570. https://doi.org/10.1016/S0169-409X(02)00027-3
  28. Yoo, S. K., D. M. Kim, and D. F. Day. 2001. Co-production of dextran and mannitol by Leuconostoc mesenteroides. J. Microbiol. Biotechnol. 11: 880-883.
  29. Yoshikawa, Y., Y. Komuta, T. Nishihara, Y. Itoh, H. Yoshikawa, and K. Takada. 1999. Preparation and evaluation of once-a-day injectable microspheres of interferon alpha in rats. J. Drug Target. 6: 449-461. https://doi.org/10.3109/10611869908996851
  30. Zhang, Y. M., F. Yang, Y. Q. Yang, F. L. Song, and A. L. Xu. 2008. Recombinant interferon-alpha2b poly(lactic-co-glycolic acid) microspheres: Pharmacokinetics-pharmacodynamics study in rhesus monkeys following intramuscular administration. Acta Pharmacol. Sin. 29: 1370-1375. https://doi.org/10.1111/j.1745-7254.2008.00881.x
  31. Robyt, J. F. and Ecklund, S. H. 1983. Relative, quantitative effect of acceptors in the reaction of Leuconostoc mesenteroides dextransucrase. Carbohydr. Res. 121: 279-286. https://doi.org/10.1016/0008-6215(83)84024-5
  32. Robyt, J. F. 1986. Encyclopedia of Polymer Science and Technology, pp. 752-767, 4th Ed. John Wiley & Sons, New York, USA.
  33. Mehvar, R. 2000. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Release 69: 1-25. https://doi.org/10.1016/S0168-3659(00)00302-3

Cited by

  1. Poly-ε-caprolactone microspheres containing interferon alpha as alternative formulations for the treatment of chronic hepatitis C vol.48, pp.1, 2011, https://doi.org/10.1590/s1984-82502012000100006
  2. Cytokine-Encapsulated Biodegradable Microspheres for Immune Therapy vol.49, pp.7, 2011, https://doi.org/10.1080/08820139.2020.1752713
  3. Preparation and Evaluation of rhINF-α-2b Sodium Hyaluronate Cross-Linked Porous Microspheres: Characterization, Sustained-Release Properties, and Antitumor Activity vol.23, pp.1, 2022, https://doi.org/10.1208/s12249-021-02178-5