In-situ Bioremediation of Total Petroleum Hydrocarbons-Contaminated Soil by Pseudomonas Species

토양 내 TPH(Total Petroleum Hydrocarbons)의 생물학적 분해 연구

  • Kim, Jee-Young (Department of Life Science, College of Natural Science, Kyonggi University) ;
  • Lee, Sang-Seob (Department of Life Science, College of Natural Science, Kyonggi University)
  • 김지영 (경기대학교 자연과학대학 생명과학과 미생물학 연구실) ;
  • 이상섭 (경기대학교 자연과학대학 생명과학과 미생물학 연구실)
  • Received : 2011.05.11
  • Accepted : 2011.06.13
  • Published : 2011.06.28

Abstract

We previously showed that five strains belonging to Pseudomonas could remove TPH (Total Petroleum Hydrocarbons) efficiently when they are applied to TPH-contaminated soil. We optimized the bioremediation condition using different hydrocarbons and nutrients conditions to improve the efficiency. We setup lab-scale column bioreactor to monitor TPH and diesel removal efficiency. When we applied five Pseudomonas sp. mixtures to 25,000 $mg{\cdot}kg^{-1}$ TPH-contaminated soil (diesel 10,000 $mg{\cdot}kg^{-1}$, kerosene 10,000 $mg{\cdot}kg^{-1}$, gasoline 5,000 $mg{\cdot}kg^{-1}$) with the optimum condition, 76.3% of TPH removal efficiency was shown for 25 days. Meanwhile, in the application of five Pseudomonas sp. mixtures to 20,000 $mg{\cdot}kg^{-1}$ diesel-contaminated soil with the optimum condition, 99.2% of diesel removal efficiency was shown for 40 days. In the application to lab-scale bioreactor with five high efficiency bacteria, 88.5% of TPH removal efficiency was shown for 45 days. Based on the results from this study, we confirmed that this mixed Pseudomonas sp. consortium might improve the bioremediation of TPH in contaminated soil, the efficacy can be controlled by improving the nutrients. We also confirmed that the nutrients and oxygen for biodegradation of TPH could contribute on the management and control of applications of these strains for the study of bioremediation of TPH-contaminated soil.

본 연구실에서 확보한 diesel 분해 고효율 균주 Pseudomonas putida KDi 19, kerosene 분해 고효율 균주 P. aeruginosa K14, gasoline 분해 고효율 균주 P. putida G8, BTEX 분해 고효율 균주 P. putida BJ10, P. putida E41의 5개의 고효율 균주를 컬럼 및 반응기에 적용하여 TPH의 생물학적 분해 실험에 적용하였다. 영양염류 및 산소 농도, 균농도 등 최적의 환경인자 도출을 통해 최적의 생물학적 처리 효율을 TPH의 경우, MSM 및 activator I을 주입하여 25일 동안 76.3%의 제거 효율과 제거속도상수 K=0.711를 나타냈으며, diesel의 경우 40일 동안 99.2%의 제거 효율을 보였다. 또한, TPH 오염 토양의 lab-scale bioremediation 실험에서 고효율 균주를 적용한 결과 45일 운전 기간 동안 7,209.9 $mg{\cdot}kg^{-1}$을 825.6 $mg{\cdot}kg^{-1}$까지 88.5% 제거하였다. 본 연구에서 도출된 TPH로 오염된 토양의 bioremediation을 위한 고효율 균주 확보와 최적의 환경 인자 도출은 현재 부족한 생물학적 처리 연구와 물리적 화학적 처리의 문제를 해소하기 위한 기초적 실험 자료로서 기여할 것으로 사료된다.

Keywords

References

  1. Atlas, R. M. 1991. Microbial hydrocarbon degradationbioremediation of oil spills. J. Chem. Technol. Biotechnol. 52: 149-156
  2. Bartha, R. 1986. Biotechnology of petroleum pollutant biodegradation. Microb. Ecol. 12: 155-172. https://doi.org/10.1007/BF02153231
  3. Facundo, J. M., Vanessa, H. R., and L. M. A. Teresa. 2000. Biodegradation of diesel oil in soil by a microbial consortium. Water, Air, and Soil Poll. 128: 313-320.
  4. Gallego, J. L. R., J. Loredo, J. F. Lamas, F. Vazquez, and J. Sanchez. 2001. Bioremediation of diesel-contaminated soils: Evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12: 325-35. https://doi.org/10.1023/A:1014397732435
  5. Greekdrink, M. J., M. C. M. van Loosdrecht, and K. Ch. A. M. Luyben. 1996. Biodegradability of diesel oil. Biodegradation 7: 73-81 https://doi.org/10.1007/BF00056560
  6. Kanaly, R. A. and H. G. Hur. 2006. Growth of Phanerochaete chrysosporium on diesel fuel hydrocarbons at neutral pH. Chemosphere 63: 202-211. https://doi.org/10.1016/j.chemosphere.2005.08.022
  7. Kim, J.-Y. and S.-S. Lee. 2008. Biodegradation of Kerosene by Pseudomonas aeruginosa K14. Kor. J. Microbiol. 44: 159-163.
  8. Kim, L.-H. and S.-S. Lee. 2011. Isolation and characterization of ethyl benzene-degrading Pseudomonas putida E41. J. Microbiol. (Accepted)
  9. Lee, J. Y., Lee, C. H., Lee, K. K., and Choi, S. S. 2001. Evaluation of soil vapor extraction and bioventing for a petroleum contaminated shallow aquifer in Korea. Soil and Sediment Contamination 10: 439-458. https://doi.org/10.1080/20015891109365
  10. Li, Y. Q., H. F. Liu, Z. L. Tian, L. H. Zhu, Y. H. Wu, and H. Q. Tang. 2008. Diesel pollution biodegradation: Synergetic Effect of Mycobacterium and filamentous fungi. Biomed. Environ. Sci. 21: 181-187. https://doi.org/10.1016/S0895-3988(08)60026-4
  11. Liu, P. W. G., L. M. Whang, M. C. Yang, and S. S. Cheng. 2008. Biodegradation of diesel-contaminated soil: A soil column study. J. Chin. Inst. Env. Eng. 39: 419-428. https://doi.org/10.1016/j.jcice.2008.03.006
  12. Riser-Roberts, E. 1998. Remediation of petroleum contaminated soils: Biological, physical, and chemical process. CRC press LLC, 2000 coporated Blvd., N.W., Boca Raton, Florida 33431, USA.
  13. Namkoong, W., Hwang, E. Y., Park, I. S., and J. Y. Choi. 2002. Bioremediation of diesel-contaminated soil with composting. Env. Poll., 119: 23-31.
  14. USEPA. 2007. National Biennial RCRA Hazardous Waste Report: Based on 2007 Data.
  15. Young, C. C., T. C. Lin, M. S. Yeh, F. T. Shen, and J. S. Chang. 2005. Identification and kinetic characteristics of an indigenous diesel-degrading Gordonia alkanivorans strain. World J. Microbiol. Biotechnol. 21: 1409-1414. https://doi.org/10.1007/s11274-005-5742-7
  16. Yun, M.-W., Jung, J.-H., Chang, S.-W., Kong, S.-H., Lee, J.- Y., Kang, D.-H., and S.-S. Lee. 2005. Biodegradation of diesel with Pseudomonas sp. KDi19 in liquid medium. J. of KSEE. 27: 1285-1291.