해양 미생물 유래 해조 다당류 분해 효소의 특성 및 산업적 응용

Properties and Industrial Applications of Seaweed Polysaccharides-degrading Enzymes from the Marine Microorganisms

  • 김정환 (동의대학교 바이오물질제어학과(BK21)) ;
  • 김연희 (동의대학교 바이오물질제어학과(BK21)) ;
  • 김성구 (부경대학교 생물공학과) ;
  • 김병우 (동의대학교 바이오물질제어학과(BK21)) ;
  • 남수완 (동의대학교 바이오물질제어학과(BK21))
  • Kim, Jeong-Hwan (Department of Biomaterial Control (BK21 program), Dong-Eui University) ;
  • Kim, Yeon-Hee (Department of Biomaterial Control (BK21 program), Dong-Eui University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University) ;
  • Kim, Byung-Woo (Department of Biomaterial Control (BK21 program), Dong-Eui University) ;
  • Nam, Soo-Wan (Department of Biomaterial Control (BK21 program), Dong-Eui University)
  • 투고 : 2011.08.03
  • 심사 : 2011.09.07
  • 발행 : 2011.09.28

초록

최근에 해조류 유래 기능성소재는 항종양성, 항바이러스성, 항혈액응고 및 면역력 증강 등의 다양한 생리활성기능을 갖는 것으로 알려져 있다. 특히 해조다당류를 저분자화하면 다양한 생체조절기능성이 월등히 높게 나타나고 있음이 보고되고 있다. 따라서 해조다당류를 해조류로부터 효과적으로 추출할 수 있는 추출방법의 최적화 및 해조다당류의 저분자화를 통하여 해조다당류 기능성 증진 방법에 대한 연구가 활발히 진행되고 있다. 본 총설에서는 최근 부각되고 있는 해양 미생물 유래 해조다당류 분해효소를 이용한 기능성 신소재 개발 및 산업적 응용에 대하여 논하고자 한다.

Recently seaweed polysaccharides have been extensively studied due to their various biological functions including antitumor, antiviral, anticoagulant, and anti-inflammatory activities. Although seaweed polysaccharides are known to possess numerous beneficial properties, their industrial applications have been limited due to the low inclusion efficiency and high cost of manufacturing involved in chemical hydrolysis. In addition, the smell of seaweed has been a limiting factor in its application in the food and cosmetic industries. Therefore, novel hydrolysis methods and the deodorization of seaweed are required if the extensive application of seaweed polysaccharides is to be seen. A number of studies have examined various seaweed polysaccharide-degrading enzymes, which have been isolated from marine microorganisms, and enzymatic hydrolysis processes have been investigated for the improvement of production yields and the bioefficacy of seaweed polysaccharides. This review is a synopsis on the properties of seaweed polysaccharides-degrading enzymes from marine microorganisms and their industrial applications. The review reveals the pressing need for more concentrated research on the development of new biological materials from seaweed.

키워드

참고문헌

  1. Araki, T., M. Hayakawa, Z. Lu, S. Karita, and T. Morishita. 1998. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J. Mar. Biotechnol. 6: 260-265.
  2. Asia, Y., Y. Miyakawa, T. Nakazato, H. Shibata, K. Saito, Y. Ikeda, and M. Kizaki. 2005. Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathway. Am. J. Hematol. 78: 7-14. https://doi.org/10.1002/ajh.20182
  3. Beer, L., E. S. Boyd, J. Peters, and M. Posewitz. 2009. Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology 20: 264-271. https://doi.org/10.1016/j.copbio.2009.06.002
  4. Beil, S., H. Kehrli, J. Peter, W. Staudenmann, A. M. Cook, T. Leisinger, and M. A. Kertesz. 1995. Purification and characterization of the agaropectin sulfatase synthesized by Psedomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene(atsA). Eur. J. Biochem. 229: 385-394. https://doi.org/10.1111/j.1432-1033.1995.0385k.x
  5. Berteau, O. and B. Mulloy. 2003. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiol. 13: 29-40.
  6. Buck, B. C. and C. M. Buchholz. 2004. The offshore ring: A new system design for the open ocean aquaculture of macroalgae. J. Appl. Phycol. 16: 355-369.
  7. Chevolot, L. A. Foucault, F. Chaubet, N. Kervarec, C. Sinquin, A. M. Fisher, and C. Boisson-Vidal. 1999. Futher data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr. Res. 319: 154-165. https://doi.org/10.1016/S0008-6215(99)00127-5
  8. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  9. Cho, E. S., J. H. Kim, Y. H. Kim, and S. W. Nam. 2010. Characterization of Agarose Produced by Yeast Cell Surface Displayed-Arylsulfatase. Kor. J. Microbiol. Biotechnol. 38: 428-433.
  10. Cho, K. J., Y. S. Lee, and B. H. Ryu. 1990. Antitumor effect and immunology activity of seaweeds toward sarcoma-180. Bull. Kor. Fish. Soc. 23: 345-352.
  11. Davidson, I. W., I. W. Sutherland, and C. J. Lawson. 1976. Purification and properties of an alginate lyase from a marine bacterium. Biochem. J. 159: 707-713.
  12. De Hostos, E. L., R. K. Togasaki, and A. Grossman. 1988. Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinharditii. J. Cell Biol. 106: 29-37. https://doi.org/10.1083/jcb.106.1.29
  13. Do, J. H. 1997. Extraction and purification of agar from Gelidium amansii. J. Korean Fish Soc. 30: 423-427.
  14. Dobashi, K., T. Nishino, M. Fufihara, and T. Nagumo. 1989. Isolation and preliminary characterization of fucose containing sulfated polysaccharide with blood anticoagulant activity from the brown seaweed. Carbohydr. Res. 194: 315- 320.
  15. Dolan, T. C. S. and D. A. Rees. 1965. The carrageenans. II. The positions of the glycosidic linkages and sulphate esters in ${\lambda}-carrageenan$. J. Chem. Soc. 3534.
  16. Duckworth, M. and W. Yaphe. 1971. Structure of ahar. I. Fractionation of a complex mixture of polysaccharides. Carbo. Res. 16: 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
  17. Fisher, F. G. and H. Dorfel. 1955. The polyuronic acids of brown algae. Part I. Z. Physiol. Chem. 302: 186-203. https://doi.org/10.1515/bchm2.1955.302.1-2.186
  18. Fu, X. T., C. H. Pan, H. Lin, and S. M. Kim. 2009. Gene cloning, expression, and characterization of a beta-agarase, agaB34, from Agarivorans albus YKW-34. J. Microbiol. Biotechnol. 19: 257-264.
  19. Gacesa, P. 1988. Alginates. Carbohydr. Polym. 8: 161-182. https://doi.org/10.1016/0144-8617(88)90001-X
  20. Guven, K. C., Y. Ozsoy, and O. N. Ulutin. 1991. Anticoagulant, fibrinolytic and antiaggregant activity of carrageenans and alginic acid. Botan. Marin. 34: 429-435.
  21. Haug, A., B. Larsen, and O. Smidsrod. 1966. A study of constitution of alginic acid by partial acid hydrolysis. Acta. Chemica. Scand. 20: 183-190.
  22. Henderson, M. J. and F. H. Milazzo. 1979. Arylsulfatase in salmonella typhymurium: Detection and influence of carbon source and tyramine on its synthesis. J. Bacteriol. 139: 80- 87.
  23. Hicks, S. J. and P. Gacesa. 1996. Heterologous expression of full-length and truncated forms of the recombinant guluronate-specific alginate lyase of Klebsiella pneumoniae. Enzyme Microbiol. Technol. 19: 68-73. https://doi.org/10.1016/0141-0229(95)00175-1
  24. Hoshi, M. and T. Moriya. 1980. Arylsulfatase of sea-urchin sperm. 2. Arylsulfatase as a lysin of sea-urchins. Dev. Biol. 74: 343-350. https://doi.org/10.1016/0012-1606(80)90436-4
  25. Iwamoto, Y., R. Araki, K. Iriyam, T. Oda, H. Fukuda, S. Hayashida, and T. Muramatsu. 2001. Purification and characterization of bifunctional alginate lyase from Alteromonas sp. strain no. 272 and its action on saturated oligomeric substrates. Biosci. Biotechnol. Biochem. 65: 133-142. https://doi.org/10.1271/bbb.65.133
  26. Jansen, H. J., C. A. Hart, J. M. Rhodes, J. R. Saunders, and J. W. Smalley. 1999. A novel mucin-sulphatase activity found in Bukholderia cepacia and Pseudomonas aeruginosa. J. Med. Microbiol. 48: 551-557. https://doi.org/10.1099/00222615-48-6-551
  27. John, R. P., G. S. Anisha, K. M. Nampoothiri, and A. Pandey. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102:186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  28. John, R. P., G. S. Anisha, K. M. Nampoothiri, and A. Pandey. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102:186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  29. Joo, D. S., J. S. Lee., J. J. Park., S. Y. Cho., H. K. Kim, and E. H. Lee. 1996. Preparation of oligosaccharides from alginic acid enzymatic hydrolysis. Kor. J. Food Sci. Technol. 28: 146-151.
  30. Joo, D. S., S. Y. Cho, and E. H. Lee. 1993. Isolation of alginate-degrading bacteria and production of alginate degrading activities by bacteria. Kor. J. Appl. Microbiol. Biotechnol. 21: 207-213.
  31. Jung, J. Y., S. S. Hur, and Y. H. Choi. 1999. Studies on the efficient extraction process of alginic acid in sea tangle. Food Eng. Prog. 3: 90-97.
  32. Kato, I. 2000. Antioxidative and antitumorigenic properties of agarooligosaccharide. Bio Industry 17: 13-19.
  33. Kim, B. J., S. D. Ha., D. J. Lim., C. Song, and J. Y. Kong. 1998. Production of agarase from marine bacterium Bacillus cereus ASK202. Kor. J. Biotechnol. Bioeng. 13: 524-529..
  34. Kim, D. E., E. Y. Lee, and H. S. Kim. 2009. Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar. Biotechnol. 11:10-16. https://doi.org/10.1007/s10126-008-9114-9
  35. Kim, H. C., H. J. Kim, W. B. Choi, and S. W. Nam. 2006. Inulooligosaccharides production from inulin by Saccharomyces cerevisiae strain displaying cell-surface endoinulinase. J. Microbiol. Biotechnol. 16: 360-367.
  36. Kim, M. J., J. H. Kim, and S. W. Nam. 2011. Constitutive overexpression of Pseudoalteromonas carrageenovora arylsulfatase in E. coli fed-batch culture. Kor. J. Chem. Eng. 28: 1101-1104. https://doi.org/10.1007/s11814-010-0488-9
  37. Kim, O. J., D. G. Lee, S. M. Lee, S. J. Lee, H. J. Do, H. J. Park, A. Kim, J. H. Lee, and J. M. Ha. 2010. Isolation and characteristics of alginate-degrading Methylobacterium sp. HJM27. Kor. J. Microbiol. Biotechnol. 38: 144-150.
  38. Kong, J. Y., S. H. Hwang, B. J. Kim, S. K. Bae, and J. D. Kim. 1997. Cloning and expression of an agarase gene form a marine bacterium Pseudomonas sp. w7. Biotechnol. Lett. 19: 23-26. https://doi.org/10.1023/A:1018302701190
  39. Lee, B. H., S. B. Lee, and W. K. Kim. 2009. Alginate fiber. Fiber Technol. Ind. 13: 21-24.
  40. Lee, J. H. and E. Y. Lee. 2003. Isolation of alginate degrading marine bacteria and characterization of alginase. J. Life Sci. 23: 718-722.
  41. Lee, J. H., M. J. Bae, Y. C. Kim, and S. W. Nam. 2009. Identification and characterization of alginate lyase producing Pseudomonas sp. N7151-6. Kor. J. Microbiol. Biotechnol. 37: 350-354.
  42. Lee, S., Y. Oh, D. Kim, D. Kwon, C. Lee, and J. Lee. 2011. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl. Biochem. Biotechnol. 164:878-888. https://doi.org/10.1007/s12010-011-9181-7
  43. Lee, Y. S., D. S. Kim, B. H. Ryu, and S. H. Lee. 1992. Antitumor and immunomodulating effects of seaweeds toward sarcoma-180 cell. J. Kor. Soc. Food Nutr. 21: 544- 550.
  44. Linker, A. and L. R. Evans. 1984. Isolation and characterization of an alginase from mucoid strains of Pseudomonas aeroguinosa. J. Bacteriol. 159: 958-964.
  45. Luning, K. and S. J. Pang. 2003. Mass cultivation of seaweeds: current aspects and approaches. J. Appl. Phycol. 15:115-119.
  46. Miech, C., T. Dierks, T. Selmer, K. V. Figura, and B. Schmidt. 1998. Arylsulfatase from Klebsiella pneumoniaecarries a formylglycine generated from a serine. J. Biol. Chem. 273: 4835-4837. https://doi.org/10.1074/jbc.273.9.4835
  47. Nakashima, H., Y. Kido, N. Kobayashi, Y. Motoki, M. Neushal, and N. Yamamoto. 1987. Purification and characterization of an avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor sulfated polysaccharide extracted from sea algae. Agents Chemother. 31: 1524-1528. https://doi.org/10.1128/AAC.31.10.1524
  48. Oh, C. H., C. Nikapitiya, Y. D. Lee, I. S. Whang, S. J. Kim, D. H. Kang, J. H. Lee. 2010. Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. J. Ind. Microbiol. Biotechnol. 37: 483-494. https://doi.org/10.1007/s10295-010-0694-9
  49. Ohta, Y., Y. Hatada, M. Miyazaki, Y. Nogi, S. Ito, and K. Horikoshi. 2005. Purification and characterization of a novel $\alpha$-agarase from a Thalassomonas sp. Curr. Microbiol. 50: 212-216. https://doi.org/10.1007/s00284-004-4435-z
  50. Park, K. Y., J. H. Back, W. Hur, and S. Y. Lee. 2007. In vitro glucose and bile acid retardation effect of fucoidan from Laminaria japonica. Kor. J. Biotechnol. Bioeng. 4: 265-269.
  51. Park, Y. H., D. S. Chang, and S. B. Kim. 1994. Symbiotic formation of alginate lyase in mixed culture of bacteria isolated from soil. J. Ferment. Bioeng. 69: 192-194.
  52. Pereira, M. S., B. Mulloy, and P. A. S. Mourao. 1999. Structure and anticoagulant activity of sulfated fucans. J. Biol. Chem. 274: 7656-7667. https://doi.org/10.1074/jbc.274.12.7656
  53. Preeprame, S., K. Hayashi, J. B. Lee, U. Sankawa, and T. Hayashi. 2001. A novel antivirally active fucan sulfate derived from an edible brown alga. Chem. Pharm. Bull. 49: 484-485. https://doi.org/10.1248/cpb.49.484
  54. Rehm, B. H. A. and S. Valla. 1997. Bacterial alginates: biosynthesis and applications. Appl. Microbiol. Biotechnol. 48: 281-288. https://doi.org/10.1007/s002530051051
  55. Seok, J. H., H. G. Park, S. H. Lee, S. W. Nam, S. J. Jeon, J. H. Kim, and Y. H. Kim. 2010. High-level secretory expression of recombinant $\beta$-agarase from Zobellia galactanivorans in Pichia pastoris. Kor. J. Microbiol. Biotechnol. 38: 40-45.
  56. Scot, M., G. M. Colin, J. David, L. Mills, and J. B. Brian. 1987. Estimation of meiobenthic nematode diversity by non specialists. Marine Pollu. Bulletin. 18: 646-649. https://doi.org/10.1016/0025-326X(87)90398-5
  57. Temuujin,, U., W. J. Chi, S. Y. Lee, Y. K. Chang, and S. K. Hong. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type ${\beta}-agarase$ producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. DOI:10.1007/ S00253-011-3347-7
  58. Uo, M. H., D. S. Joo, S. Y. Cho, and T. S. Min. 2006. Purification and characterization of the extracellular alginase produced by Bacillus lichenformis AL-577. J. Kor. Soc. Food Sci. Nutr. 35: 231-237. https://doi.org/10.3746/jkfn.2006.35.2.231
  59. Wang, X., X. Liu, and G. Wang. 2011. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. J. Integr. Plant Biol. 53: 246-252. https://doi.org/10.1111/j.1744-7909.2010.01024.x
  60. Yang, J. S. and S. R. Lee. 1997. Effect of ionizing radiation on the extraction yield and viscosity of alginate. Korean J. Food Sci. Technol. 9: 194-198.
  61. Yeon, J. H., S. E. Lee, W. Y. Choi, D. H. Kang, H. Y. Lee, and K. H. Jung. 2011. Repeated-batch operation of surfaceaerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21: 323-331.
  62. Yun, E. J., M. H. Shin, J. J. Yoon, Y. J. Kim, I. G. Choi, and K. H. Kim. 2011. Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochemistry 46: 88-93. https://doi.org/10.1016/j.procbio.2010.07.019
  63. Zhang, W. W. and L. Sun. 2007. Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl. Environ. Microbiol. 73: 2825- 2831. https://doi.org/10.1128/AEM.02872-06