국내 특수 생태환경의 탈질 저영양 세균의 종 다양성 및 생리적 특성 분석

Analysis of Species Variety and Physiological Characteristics of Denitrifying Oligotrophic Bacteria Isolated from the Specific Environment in Korea

  • 이창묵 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 권순우 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 강한철 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 구본성 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 윤상홍 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Lee, Chang-Muk (Functional Biomaterial Division, National Academy of Agricultural science, Rural Development Administration) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Team, National Academy of Agricultural science, Rural Development Administration) ;
  • Kwon, Soon-Wo (Agricultural Microbiology Team, National Academy of Agricultural science, Rural Development Administration) ;
  • Kang, Han-Chul (Functional Biomaterial Division, National Academy of Agricultural science, Rural Development Administration) ;
  • Koo, Bon-Sung (Functional Biomaterial Division, National Academy of Agricultural science, Rural Development Administration) ;
  • Yoon, Sang-Hong (Functional Biomaterial Division, National Academy of Agricultural science, Rural Development Administration)
  • 투고 : 2011.07.18
  • 심사 : 2011.08.25
  • 발행 : 2011.09.28

초록

국내의 대표적 섬이나 생태환경이 잘 보존된 토양으로부터 저영양세균 3,471주를 분리하였고 이로부터 질소발생 분석법에 의해 탈질균 135주를 최종 선발하였다. 이들 균주의 16S rDNA를 염기서열 분석한 결과 이들의 90% 가량이 Proteobacterium문에 속하였으며 다른 44속에 대부분 포함되었다. 대표적인 44속에 대해 분자생물학적 동정을 한 후 다양한 외부환경(온도, pH, 염, 무기질소염) 조건에 대한 이들의 생존성 범위를 조사한 결과, 넓은 온도($4^{\circ}C{\sim}42^{\circ}C$)와 pH(4~10)범위에서 자랄 수 있는 탈질균 12종을 최종 선발하였다.

In an effort to isolate novel bacteria for the bioremediation of over-fertilized soils, we identified 135 denitrifying cells out of 3,471 oligotrophic bacteria pools (3.9%) using a denitrification medium supplemented with potassium nitrate as the sole nitrogen source. Soil samples were taken from ecologically well-conserved areas, including a mountain swamp around the demilitarized zone (Yongneup), two ecoparks (Upo and the Mujechi bog), and ten representative islands around the Korean peninsula (Jejudo, Daecheongdo, Socheongdo, Baekryeongdo, Ulrungdo, Dokdo, Geomundo, Hongdo, Huksando and Yeonpyeongdo). All of the 135 bacteria produced nitrogen gas from the denitrification medium, and were proved to be nitrate reductase positive by API-BioLog tests. Phylogenetic analysis using 16S rDNA sequences revealed that the 135 bacteria consisted of 44 different genera. Along with the most prominent, Proteobacteria (87.4%), we identified denitrifying bacteria from Firmicutes (9.4%), Actinobacteria (2.4%), and Bacteroidetes (0.8%). Physiological analyses of the 44 representative denitrifying bacteria, under various pH levels, growth temperatures and salt stresses, revealed 12 favorable denitrifying strains for soil bioremediation.

키워드

참고문헌

  1. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143- 169.
  2. Cheneby, D., L. Philippot, A. Hartmann, C. Henault, and J. Germon. 2000. 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils. FEMS Microbiol. Ecol. 34: 121-128.
  3. Colwell, R. K., E. A. Norse, D. Pimentel, F. E. Sharples, and D. Simberloff. 1985. Genetic engineering in agriculture. Science 229: 111-112. https://doi.org/10.1126/science.229.4709.111
  4. Colwell, R. R. and A. Huq. 1994. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Annals of the New York Academy of Sciences 740: 44-54. https://doi.org/10.1111/j.1749-6632.1994.tb19852.x
  5. Feng, S. and E. R. Tillier. 2007. A fast and flexible approach to oligonucleotide probe design for genomes and gene families. Bioinformatics 23: 1195-1202. https://doi.org/10.1093/bioinformatics/btm114
  6. Fernandez-Arrojo, L., M. E. Guazzaroni, N. Lopez-Cortes, A. Beloqui, and M. Ferrer. 2010. Metagenomic era for biocatalyst identification. Curr. Opin. Biotechnol. 21: 725-733. https://doi.org/10.1016/j.copbio.2010.09.006
  7. Gao, H., Z. K. Yang, T. J. Gentry, L. Wu, C. W. Schadt, and J. Zhou. 2007. Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Appl. Environ. Microbiol. 73: 563-571. https://doi.org/10.1128/AEM.01771-06
  8. Jones, C. M., B. Stres, M. Rosenquist, and S. Hallin. 2008. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol. 25: 1955-1966. https://doi.org/10.1093/molbev/msn146
  9. Kim, H. and H. Kang. 2011. The Impacts of Excessive Nitrogen Additions on Enzyme Activities and Nutrient Leaching in Two Contrasting Forest Soils. J. Microbiol. 49: 369-375. https://doi.org/10.1007/s12275-011-0421-x
  10. Lau, H. T., J. Faryna, and E. W. Triplett. 2006. Aquitalea magnusonii gen. nov., sp. nov., a novel Gram-negative bacterium isolated from a humic lake. Int. J. Syst. Evol. Microbiol. 56: 867-871. https://doi.org/10.1099/ijs.0.64089-0
  11. Lee, C. M., H. Y. Weon, Y. J. Kim, J. A. Son, S. H. Yoon, B. S. Koo, and S. W. Kwon. 2009. Aquitalea denitrificans sp. nov., isolated from a Korean wetland. Int. J. Syst. Evol. Microbiol. 59: 1045-1048. https://doi.org/10.1099/ijs.0.002840-0
  12. Ohta, H. and T. Hattori. 1983. Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie Van Leeuwenhoek 49: 429-446.
  13. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734-740. https://doi.org/10.1126/science.276.5313.734
  14. Philippot, L., M. Cregut, D. Cheneby, M. Bressan, S. Dequiet, F. Martin-Laurent, L. Ranjard, and P. Lemanceau. 2008. Effect of primary mild stresses on resilience and resistance of the nitrate reducer community to a subsequent severe stress. FEMS Microbiol. Lett. 285: 51-57. https://doi.org/10.1111/j.1574-6968.2008.01210.x
  15. Poindexter, J. S. 1981. The caulobacters: ubiquitous unusual bacteria. Microbiol. Rev. 45: 123-179.
  16. Schmidt, T. M., E. F. DeLong, and N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173: 4371-4378.
  17. Singh, A., N. Singh Chauhan, H. V. Thulasiram, V. Taneja, and R. Sharma. 2010. Identification of two flavin monooxygenases from an effluent treatment plant sludge metagenomic library. Bioresour. Technol. 101: 8481-8484. https://doi.org/10.1016/j.biortech.2010.06.025
  18. Staley, J. T. and A. Konopka. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39: 321-346. https://doi.org/10.1146/annurev.mi.39.100185.001541
  19. Steward, G. F., B. D. Jenkins, B. B. Ward, and J. P. Zehr. 2004. Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Appl. Environ. Microbiol. 70: 1455-1465. https://doi.org/10.1128/AEM.70.3.1455-1465.2004
  20. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  21. Whang, K. and T. Hattori. 1988. Oligotrophic bacteria from rendzina forest soil. Antonie Van Leeuwenhoek 54: 19-36. https://doi.org/10.1007/BF00393955