Cellulosimicrobium sp. 분리균의 Hemicellulases 생산성과 효소특성

Production and Properties of Hemicellulases by a Cellulosimicrobium sp. Isolate

  • 윤기홍 (우송대학교 식품생물과학과)
  • Yoon, Ki-Hong (Department of Food Science & Biotechnology, Woosong University)
  • 투고 : 2011.09.05
  • 심사 : 2011.09.16
  • 발행 : 2011.09.28

초록

탄소원으로 palm kernel meal(PKM)과 밀기울을 함유한 배지에서 농후배양하여 작물 재배 토양으로부터 xylan과 locust bean gum(LBG)에 대한 분해활성이 있는 균을 분리하였다. 분리균 YB-1107의 16S rDNA 서열이 Cellulosimicrobium 속 균주와 유사도가 높은 균주로 판명되었다. 분리균의 mannanase는 LBG와 PKM에 의해 생산성이 증가된 반면에 xylanase는 oat spelt xylan과 밀기울에 의해 생산성이 증가되었다. Mannanase는 0.7% PKM을 첨가한 배지, xylanase는 1% 밀기울을 첨가한 배지에서 각각 최대 생산성을 보였으며 모두 정지기에서 생산이 되었다. 분리균의 배양상등액은 $55^{\circ}C$와 pH 6.5에서 mannanase의 최대활성을 보였으며, $65^{\circ}C$와 pH 5.5에서 xylanase의 최적반응 활성을 나타냈다. Mannanase에 의해 분해된 LBG와 xylanase에 의해 분해된 xylan으로부터 각각 올리고당이 관찰되었으며, 또한 이들 효소는 밀기울과 미강도 분해하여 올리고당으로 전환하는 것으로 확인되었다.

A bacterial strain capable of hydrolyzing xylan and locust bean gum (LBG) was isolated from farm soil by enrichment culture using mixture of palm kernel meal (PKM) and wheat bran as carbon source. Nucleotide sequence of 16S rDNA amplified from the isolate YB-1107 showed high similarity with those of genus Cellulosimicrobium strains. Xylanase productivity was increased when the Cellulosimicrobium sp. YB-1107 was grown in the presence of wheat bran or oat spelt xylan, while mannanase productivity was increased drastically when grown in the presence of PKM or LBG. Particularly, maximum mannanase and xylanase activities were obtained in the culture filtrate of media containing 0.7% PKM or 1% wheat bran, respectively. Both enzyme activities were produced at stationary growth phase. Mannanase from the culture filtrate showed the highest activity at $55^{\circ}C$ and pH 6.5. Xylanase activity was optimal at $65^{\circ}C$ and pH 5.5. The predominant products resulting from the mannanase or xylanase hydrolysis were oligosaccharides for LBG or xylan, respectively. In addition, the enzymes could hydrolyze wheat bran and rice bran into oligosaccharides.

키워드

참고문헌

  1. Bakalidou, A., P. kampfer, M. Berchtold, T. Kuhnigk, M. Wenzel, and H. Konig. 2002. Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. Int. J. Syst. Evol. Microbiol. 52: 1185-1192. https://doi.org/10.1099/ijs.0.01904-0
  2. Huitron, C., R. Perez, A. E. Sanchez, P. Lappe, and L. Rocha Zavaleta. 2008. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes. J. Environ. Biol. 29: 37-41.
  3. Jorgensen, H. A. R. Sanadi, C. Felby, N. E. Lange, M. Fischer, and S. Ernst. 2010. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake. Appl. Biochem. Biotechnol. 161: 318-332. https://doi.org/10.1007/s12010-009-8814-6
  4. Kansoh, A. L. and Z. A. Nagieb. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek. 85: 103-114.
  5. Kim, D. Y., M. K. Han, D. -S. Park, J. S. Lee, H. -W. Oh, D. -H. Shin, T. S. Jeong, S. U. Kim, K. S. Bae, K. -H. Son, and H. -Y. Park. 2009. Novel GH10 xylanase, with a fibronectin type 3 domain, from Cellulosimicrobium sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Appl. Environ. Microbiol. 75: 7275-7279. https://doi.org/10.1128/AEM.01075-09
  6. Kim, D. Y., M. K. Han, J. S. Lee, H. -W. Oh, D. -S. Park, D. -H. Shin, K. S. Bae, K. -H. Son, and H. -Y. Park. 2009. Isolation and characterization of a cellulase-free endo-$\beta$-1,4- xylanase produced by an invertebrate-symbiotic bacterium, Cellulosimicrobium sp. HY-13. Proc. Biochem. 44: 1055- 1059. https://doi.org/10.1016/j.procbio.2009.05.005
  7. Kim, D. Y., S. -J. Ham, H. J. Lee, Y. -J. Kim, D. -H. Shin, Y. H. Rhee, K. -H. Son, and H. -Y. Park. 2011. Cloning and characterization of a modular GH5 $\beta$-1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresour. Technol. 102: 9185-9192. https://doi.org/10.1016/j.biortech.2011.06.073
  8. Kim, D. Y., S. -J. Ham, H. J. Lee, Y. -J. Kim, D. -H. Shin, Y. H. Rhee, K. -H. Son, and H. -Y. Park. 2011. A highly active endo-$\beta$-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Micrb. Technol. 48: 365-370. https://doi.org/10.1016/j.enzmictec.2010.12.013
  9. Liu, C. H., J. Y. Wu, and J. S. Chang. 2008. Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules. Bioresour. Technol. 99: 1904-1910. https://doi.org/10.1016/j.biortech.2007.03.029
  10. Miller, M. L., R. Blum, W. E. Glennon, and A. L. Burton. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2: 127-132.
  11. Nagar, S., V. K. Gupta, D. Kumar, L. Kumar, and R. C. Kuhad. 2010. Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J. Ind. Microbiol. 37: 71-83. https://doi.org/10.1007/s10295-009-0650-8
  12. Oh, H. -W., S. Y. Heo, D. Y. Kim, D. -S. Park, K. S. Bae, and H. -Y. Park. 2008. Biochemical characterization and sequence analysis of a xylanase produced by an exosymbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Antonie van Leeuwenhoek. 93: 437- 442. https://doi.org/10.1007/s10482-007-9210-2
  13. Oh, Y. P., J. -M. Lee, K. H. Cho, and K. -H. Yoon. 2002. Isolation and enzyme production of a mannanase-producing strain, Bacillus sp. WL-3. Kor. J. Microbiol. Biotechnol. 30: 247-252.
  14. Schumann, P., N. Weiss, and E. Stackebrandt. 2001. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51: 1007-1010. https://doi.org/10.1099/00207713-51-3-1007
  15. Shibasaki, S., J. Okada, Y. Nakayama, T. Yoshida, and M. Ueda. 2008. Isolation of bacteria which produce yeast cell wall-lytic enzymes and their characterization. Biocontrol Sci. 13: 91-96. https://doi.org/10.4265/bio.13.91
  16. Song, J. -M. and D. -Z. Wei. 2010. Production and characterization of cellulases and xylanases of Cellulosimicrobium cellulans grown in pretreated and extracted bagasse and minimal nutrient medium M9. Biomass Bioenergy. 34: 1930- 1934. https://doi.org/10.1016/j.biombioe.2010.08.010
  17. Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64. https://doi.org/10.1080/07388550290789450
  18. Yoon, K. -H., S. Chung, and B. -L. Lim. 2008. Characterization of the Bacillus subtilis WL-3 mannanase from a recombinant Escherichia coli. J. Microbiol. 46: 344-349. https://doi.org/10.1007/s12275-008-0045-y
  19. Zangiabadi, H. and M. Torki. 2010. The effect of a betamannanase- based enzyme on growth performance and humoral immune response of broiler chickens fed diets containing graded levels of whole dates. Trop. Anim. Health Prod. 42: 1209-1217. https://doi.org/10.1007/s11250-010-9550-1