Antiinflammatory and Antiallergic Activity of Fermented Turmeric by Lactobacillus johnsonii IDCC 9203

Lactobacillus johnsonii IDCC 9203으로 발효한 울금의 소염 및 항알레르기 효과

  • Kim, Seong-Beom (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Kang, Byung-Hwa (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Kwon, Hyuk-Sang (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Kang, Jae-Hoon (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.)
  • Received : 2011.07.06
  • Accepted : 2011.08.29
  • Published : 2011.09.28

Abstract

Although turmeric has numerous pharmacological effects, the poor water-solubility of curcuminoids, active components of turmeric, restricts their systemic availability in orally administered formulations and limits their therapeutic potential. In this study we attempted turmeric fermentation using several probiotic bacteria to improve its solubility, and also investigated the effects of turmeric and fermented turmeric on anti-inflammatory activity. Fermented turmeric, by L. johnsonii IDCC 9203, more strongly inhibited LPS-induced expression of the pro-inflammatory cytokines than non-fermented turmeric and fermented turmeric by other probiotic strains. We used an NC/Nga mouse model for mite antigen-induced atopic dermatitis to examine the efficacy of the fermented turmeric. Fermented turmeric-fed mice exhibited a significantly reduced serum IgE level and mitigated acute inflammation. When the fermented turmeric was pre-treated by oral administration, it had more preventive activity against acute anaphylactic reaction than the non-fermented group. In addition, we observed that fermentation of turmeric leads to increased water-solubility of curcumin and a change in the active components ratios for bisdemethoxycurcumin, demethoxycrucumin and curcumin. Taken together, these results strongly suggest that fermented turmeric by L. johnsonii IDCC 9203 could be used as a functional food ingredient for improving treatments for atopic dermatitis.

인도산 울금 분말을 bifidobacteria와 lactobacilli를 포함한 프로바이오틱 유산균으로 발효한 시료들의 소염활성 정도를 세포 내 염증성 인자들의 발현양을 관찰함으로써 평가하였다. 그 중 L. johnsonii IDCC 9203으로 발효한 시료의 소염 활성이 가장 뛰어났다. 이를 바탕으로 울금 분말을 포함한 본배양 배지에서 L. johnsonii IDCC 9203으로 21시간 동안 배양 후 얻은 상등액으로 발효 울금 원료를 제조하였고, 제조된 발효 울금 원료에 대한 소염활성 효능을 테스트하기 위해 LPS로 활성화된 raw 264.7 세포주에 처리하고 COX-2와 iNOS의 발현양을 확인하였다. 그 결과 발효 울금 원료 250 ${\mu}g$/mL까지 농도 의존적으로 COX-2와 iNOS의 발현을 감소시켰으며, 그 저해 활성은 동일 농도의 비발효 울금 원료보다 강하였다. NC/Nga 아토피 피부염 동물모델과 PCA 동물모델에서 발효 울금 원료의 효능 확인 결과 대조군에 비해 아토피 피부염의 초기 증상 개선효과와 급작형 과민반응에 대한 예방효과가 뛰어남을 확인하였다. 발효 울금 원료의 유효성분 함량을 분석했을 때 커큐민의 함량은 비발효 울금 원료에 비해 2.5배 증가했으며, 수용성 커큐민의 함량 역시 증가하였다. 또한 비스디메톡시커큐민이나 디메톡시커큐민의 함량도 증가되었을 뿐 아니라 전체 커큐미노이드 중에서 이들 유도체의 비중이 높아짐을 확인하였다. 모든 결과들을 종합하면, 울금 분말을 L. johnsonii IDCC 9203을 이용하여 발효함으로써 유효성분인 커큐미노이드들의 성분비가 변화하고 수용성 커큐미노이드의 증가에 의한 생체 이용율 증가로 울금의 소염 및 항알레르기 활성이 증가된다. 본 연구를 통해 L. johnsonii IDCC 9203으로 발효한 울금 원료는 급성기 피부염에 대한 예방 및 치료 목적으로 사용 가능할 것으로 예상된다.

Keywords

References

  1. Almeida, L. P., A. P. F. Cherubino, R. J. Alves, L. Dufosse', and M.B.A. Glo ria. 2005. Separation and determination of the physico-chemical characteristics of curcumin, demeth-oxycurcumin and bisdemethoxycurcumin. Food Res. Int. 38:1039-1044. https://doi.org/10.1016/j.foodres.2005.02.021
  2. Assanasen, P. and R. M. Naclerio. 2002. Antiallergic antiinflammatory effects of H1-antihistamines in human. Clin. Allergy immunol.17: 101-139.
  3. Bae, E. A., H. T. Trinh, Y. C. Lee, S. W. Kim, and D. H. Kim. 2008. Inhibitory effect of fermented red ginseng against passive cutaneous anaphylaxis reaction and scratching behaviors in mice. J. Ginseng Res. 32: 33-38. https://doi.org/10.5142/JGR.2008.32.1.033
  4. Goel, A., A. B. Kunnumakkara, and B. B. Aggarwal. 2008. Curcumin as 'Curecumin': From kitchen to clinic. Biochem. Pharmacol. 75: 787-809. https://doi.org/10.1016/j.bcp.2007.08.016
  5. Hay, C. H. and J.S. de Belleroche. 1998. Dexamethasone prevents the induction of COX-2 mRNA and prostaglandins in the lumbar spinal cord following intraplantar FCA in parallel with inhibition of oedema. Neuropharmacology 37: 739-744. https://doi.org/10.1016/S0028-3908(98)00073-2
  6. Inagaki, N., N. Nakamura, M. Nagao, K. Musoh, H. Kawasaki, and H. Nagai. 1999. Participation of histamine H and H receptors in passive cutaneous anaphylaxis-induced scratching behavior in ICR mice. Eur. J. Pharmacol. 367: 361-371. https://doi.org/10.1016/S0014-2999(98)00974-1
  7. Jayaprakasha, G. K., L. J. Rao, and K. K. Sakariah. 2006. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 98: 720-724. https://doi.org/10.1016/j.foodchem.2005.06.037
  8. Kang, J. K., H. J. Kang, and H. Y Lee. 2009. Effects of fermented turmeric (Curcuma longa) by Bacillus natto supplementation on liver function and serum lipid parameters in mice. J. Korean Soc. Food Sci. Nutr. 38: 430-435. https://doi.org/10.3746/jkfn.2009.38.4.430
  9. Kim, A. N., W. K. Jeon, J. J. Lee, and B. C. Kim. 2010. Upregulation of heme oxygenase-1 expression through CaMKIIERK1/ 2-Nrf2 signaling mediates the anti-inflammatory effect of bisdemethoxycurcumin in LPS-stimulated macrophages. Free Radic. Biol. Med. 49: 323-331. https://doi.org/10.1016/j.freeradbiomed.2010.04.015
  10. Kim, K. S., M. G. Choung, and S. H. Park. 2005. Quantitative determination and stability of curcuminoid pigments from turmeric (Curcuma longa L.) root. Korean J. Crop. Sci. 50: 211-215.
  11. Lee, E. B., S. Y. Y, S. Y. Chung, S. A. Seung, H. M. Rheu, J. S. Yang, and T. M. Yoo. 1998. Studies on the antiinflammatory effects of natural products. J. Appl. Pharmacol. 6: 269- 275.
  12. Lee, S. H., H. S. Kwon, E. H. Yang, B. H. Kang, and T. Y. Kim. 2008. Isolation of Lactobacillus johnsonii IDCC 9203 from infant feces and its probiotic properties. Kor. J. Microbiol. Biotechnol. 36: 121-127.
  13. Leung, D. Y. M. 2000. Atopic dermatitis: New insights and opportunities for therapeutic intervention. J. Allergy Clin. Immunol. 105: 860-76. https://doi.org/10.1067/mai.2000.106484
  14. Mahattanadul, S., T. Nakamura, P. Panichayupakaranant, N. Phdoongsombut, K. Tungsinmunkong, and P. Bouking. 2009. Comparative antiulcer effect of bisdemethoxycurcumin and curcumin in a gastric ulcer model system. Phytomedicine 16: 342-351. https://doi.org/10.1016/j.phymed.2008.12.005
  15. Matsuda, H., S. Tewtrakul, T. Morikawa, A. Nakamura, and M. Yoshikawa. 2004. Anti-allergic principles from Thai zedoary: structural requirements of curcuminoids for inhibition of degranulation and effect on the release of $TNF-{\alpha}$ and IL-4 in RBL-2H3 cells. Bioorg. Med. Chem. 12: 5891-5898. https://doi.org/10.1016/j.bmc.2004.08.027
  16. Novak, N., T. Bieber, and D. Y. M. Leung. 2003. Immune mechanisms leading to atopic dermatitis. J. Allergy Clin. Immunol. 112: 128-39. https://doi.org/10.1016/j.jaci.2003.09.032
  17. Oh, P. S., H. J. Lee, and K. T. Lim. 2009. Inhibitory effect of glycoprotein isolated from cudrania tricuspidata bureau on histamine release and COX-2 activity in RBL-2H3 cells. Korean J. Food Sci. Technol. 41: 405-412.
  18. Portes, E., C. Gardrat, and A. Castellan. 2007. A comparative study on the antioxidant properties of tetrahydrocurcuminoids and curcuminoids. Tetrahedron 63: 9092-9099. https://doi.org/10.1016/j.tet.2007.06.085
  19. Schacke, H., W. D. Docke, and K. Asadullah. 2002. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 96: 23-43. https://doi.org/10.1016/S0163-7258(02)00297-8
  20. Sunada, Y., S. Nakamura, and C. Kamei. 2008. Effect of Lactobacillus acidophilus strain L-55 on the development of atopic dermatitis-like skin lesions in NC/Nga mouse. Int. Immunopharmacol. 8: 1761-1766. https://doi.org/10.1016/j.intimp.2008.08.011
  21. Sung, Y. Y., T. S. Yoon, J. Y. Jang, S. J. Park, G. H. Jeong, and H. K. Kim. 2011. Inhibitory effects of Cinnamomum cassia extract on atopic dermatitis-like skin lesions induced by mite antigen in NC/Nga mice. J. Ethnopharmacol. 133: 621-628. https://doi.org/10.1016/j.jep.2010.10.043
  22. Sur, B. J., B. B. Lee, M. J. Yeom, J. J. Han, H. D. Choi, y. J. Lee, S. J. Kim, S. H. Yoon, and D. H. Hahm. 2010. Inhibitory effect of phosphatidylserine on atopy-like dermatitis in NC/Nga mice. Food Sci. Biotechnol. 19: 1513-1518. https://doi.org/10.1007/s10068-010-0215-7
  23. Yodkeeree, S., W. Chaiwangyen, S. Garbisa, and P. Limtrakul. 2009. Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J. Nutr. Biochem. 20: 87-95. https://doi.org/10.1016/j.jnutbio.2007.12.003