토양미생물 복원제를 이용한 유류로 오염된 토양의 복원

Bioremediation Efficiency of Oil-Contaminated Soil using Microbial Agents

  • 홍선화 (수원대학교 환경에너지공학과) ;
  • 이상민 (수원대학교 환경에너지공학과) ;
  • 이은영 (수원대학교 환경에너지공학과)
  • Hong, Sun-Hwa (Department of Environmental and Energy Engineering, Suwon University) ;
  • Lee, Sang-Min (Department of Environmental and Energy Engineering, Suwon University) ;
  • Lee, Eun-Young (Department of Environmental and Energy Engineering, Suwon University)
  • 투고 : 2011.08.19
  • 심사 : 2011.09.15
  • 발행 : 2011.09.28

초록

유류로 오염된 토양을 토양미생물 복원제를 첨가한 후 다양한 조건에서20일 동안의 유류저감효과를 알아보았다. 실험조건은 유류로만 오염된 토양(DS), 토양미생물 복원제를 20%(w/w)가 되도록 첨가한 유류로 오염된 토양(DSP), 토양 미생물 복원제를 넣은 후 pH를 중성으로 보정한 유류로 오염된 토양(DSP-1), 토양미생물 복원제와 촉진제를 넣은 유류로 오염된 토양(DSP-2), 토양미생물 복원제와 촉진제를 넣은 후 pH를 중성으로 보정한 유류로 오염된 토양(DSP-3)을 설정하였다. 실험 결과 pH를 보정한 토양미생물 복원제를 첨가한 유류오염토양은 탈수소 효소 활성과 TPH 저감에서의 효능이 우수하였다. 실험이10일 경과되었을 때 탈수소 효소 활성이 가장 높은 DSP-1 토양이 TPH 역시 가장 활발히 분해했다. 결과적으로 초기 10일의 배양기간 동안 토양미생물 복원제를 첨가한 토양은 대조군에 비해 38% 가량의 TPH 저감상승효과를 볼 수 있다. 토양미생물 복원제의 첨가를 통해 초기 저감속도를 올려줄 수 있으며, 최종적으로도 비 첨가군에 비해 높은 저감효율을 기대할 수 있다. 토양미생물 복원제를 유류오염토양을 복원한다면 초기 오염물질을 빠르게 처리할 수 있지만 미생물 활성은 pH, 온도 등 환경 인자에 많은 영향을 받으므로 토양미생물 복원제의 효율을 최대화하기 위해서는 환경 인자를 분석하여 이를 바탕으로 복원을 진행한다면 오염물질 정화 효율을 향상시킬 수 있을 것이다.

Oil pollution was world-wide prevalent treat to the environment, and the physic-chemical remediation technology of the TPH (total petroleum hydrocarbon) contaminated soil had the weakness that its rate was very slow and not economical. Bioremediation of the contaminated soil is a useful method if the concentrations are moderate and non-biological techniques are not economical. The aim of this research is to investigate the influence of additives on TPH degradation in a diesel contaminated soil environment. Six experimental conditions were conduced; (i) diesel contaminated soil, (ii) diesel contaminated soil treated with microbial additives, (iii) diesel contaminated soil treated with microbial additives and the mixture was titrated to the end point of pH 7 with NaOH, (iv) diesel contaminated soil treated with microbial additives and accelerating agents and (v) diesel contaminated soil treated with microbial additives and accelerating agents, and the mixture was titrated to the end point of pH 7 with NaOH. After 10 days, significant TPH degradation (67%) was observed in the DSP-1 soil sample. The removal of TPH in the soil sample where microbial additives were supplemented was 38% higher than the control soil sample during the first ten days. The microbial additives were effective in both the initial removal rate and relative removal efficiency of TPH compared with the control group. However, various environmental factors, such as pH and temperature, also affected the activities of microbes lived in the additives, so the pH calibration of the oil-contaminated soil would help the initial reduction efficiency in the early periods.

키워드

참고문헌

  1. An, Y. J., Y. H. Joo, I. Y. Hong, H. W. Ryu, and K. S. Cho. 2004. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Appl. Environ. Microbiol. 65: 611-619.
  2. Betancur-Galvis, L. A., D. Alvarez-Bernal, A. C. Ramos- Valdivia, and L. Dendooven. 2006. Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texcoco. Chemosphere 62: 1749-1760. https://doi.org/10.1016/j.chemosphere.2005.07.026
  3. Garland, J. L. 1997. Analysis and interpretation of community level physiological profiles in microbial ecology. FEMS Microbiol. Ecol. 24: 289-300. https://doi.org/10.1111/j.1574-6941.1997.tb00446.x
  4. Garland, J. L. and A. L. Mills. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization. Appl. Environ. Microbiol. 57: 2351-2359.
  5. Glick, B. R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393. https://doi.org/10.1016/S0734-9750(03)00055-7
  6. Huang, X. D., Y. El-Alawi, J. Gurska, B. R. Glick, and B.M. Greenberg. 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 81: 139-147. https://doi.org/10.1016/j.microc.2005.01.009
  7. Ian, F. S. and J. F. Peter. 2003. A tribute to claude shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the shannon-wiener index. Global Ecol. Biogeogr. 12: 177-179. https://doi.org/10.1046/j.1466-822X.2003.00015.x
  8. Imsande, J. 1998. Iron, sulfur, and chlorophyll deficiencies: A need for an integrative approach in plant physiology. Physiol. Plant. 103: 139-144. https://doi.org/10.1034/j.1399-3054.1998.1030117.x
  9. Macek, T. M. and J. Kas, 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18: 23-34. https://doi.org/10.1016/S0734-9750(99)00034-8
  10. Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 6: 3085-3092.
  11. Marques, A. V., S. C. Cunha des Santos, R. D. C. Casella, R. L. Vital, C. V. Sebastin, and L. Seldin. 2008. Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water. J. Microbiol. Biotechnol. 18: 1966-1974.
  12. Medina-Bellver, J. I., P. Marn, A. Delgado, A. Rodrguez- Sanches, E. Reyes, J. L. Ramos, and S. Marqus. 2005. Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environ. Microbiol. 7: 773-779. https://doi.org/10.1111/j.1462-2920.2005.00742.x
  13. Mresi, W. and F. Schinner. 1991. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazilium chloride. Biol. Fertil. Soils. 11: 210-220. https://doi.org/10.1007/BF00335769
  14. Muhammad, A., J. Xu, Z. Li, H. Wang, and H. Yao. 2005. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere 60: 508-514. https://doi.org/10.1016/j.chemosphere.2005.01.001
  15. Nam, B. H., B. J. Park, and H. S. Yun. 2008. Biodegradation of JP-8 by Rhodococcus fascians Isolated from Petroleum Contaminated Soil. Kor. J. Microbiol. Biotechnol. 23: 819- 823.
  16. Philp, J. C., S. M. Bamforth, I. Singleton, and R. M. Atlas. 2005. Environmental pollution and restoration: A role for bioremediation, In R. M. Atlas, and J. Philp (eds.). Bioremediation. ASM Press, Washington, DC. U.S.A. 1-48.
  17. Reichenauer, T. G. and J. J. Germida, 2008. Phytoremediation of organic contaminants in soil and groundwater. Green Sust. Chem. 1: 708-717.
  18. Valeria, P. A., R. B. Vieira, F. P. Franca, and V. L. Cardoso. 2007. Biodegradation of effluent contaminated with diesel fuel and gasoline. J. Hazard. Mater. 140: 52-59. https://doi.org/10.1016/j.jhazmat.2006.06.048
  19. Wei, Q. F., R. R. Mather, and A. F. Fotheringham. 2005. Oil removal from used sorbents using a biosurfactant. Bioresour. Technol. 96: 331-334. https://doi.org/10.1016/j.biortech.2004.04.005
  20. Yao, H., Z. He, M. J. Wilson, and C. D. Campell. 2000. Microbial biomass and community structure in a accumulation in soils increasing fertility and changing land use. Microb. Ecol. 40: 223-237.