Comparison between Propofol/Remifentanil and Ketamine/Remifentanil for TIVA in Beagle Dogs

비글견에서 Propofol/Remifentanil과 Ketamine/Remifentanil을 사용한 완전 정맥 내 마취법의 비교

  • Choi, Woo-Shik (Department of Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Jang, Hwan-Soo (Department of Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Jai-Soon (Department of Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Yun, Sung-Ho (Department of Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Kwon, Young-Sam (Department of Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Jang, Kwang-Ho (Department of Surgery, College of Veterinary Medicine, Kyungpook National University)
  • Accepted : 2011.10.06
  • Published : 2011.10.31

Abstract

The cardiopulmonary responses during total intravenous anesthesia (TIVA) between remifentanil/propofol infusion and remifentanil/ketamine infusion in dogs were compared. Fourteen healthy adult beagle dogs were premedicated with acepromazine (0.1 mg/kg, SC) and medetomidine (20 ${\mu}g$/kg, IV), and anesthetized for 3 hr with remifentanil (0.5 ${\mu}g$/kg/min)/propofol (loading dose: 1 mg/kg, CRI: 0.3 mg/kg/min) CRI (group 'P') or remifentanil/ ketamine (loading dose : 5 mg/kg, CRI: 0.1 mg/kg/min) CRI (group 'K'), respectively. Hemodynamics, blood gas analysis and behavioral changes during recovery were measured. The level of anesthesia was determined by toe-web clamping test. The level of surgical anesthesia was maintained throughout the experiment in both groups. Systolic arterial pressure, mean arterial pressure, $PaO_2$ and $SpO_2$ in group 'K' were significantly higher than in group 'P', and were maintained near the normal ranges. In addition, $PaO_2$ in group 'K' was significantly lower than in group 'P'. However, diastolic arterial pressure, heart rate and respiratory rate were not significantly differed. Mean extubation time from the end of infusion was significantly reduced in group 'K', but mean sitting time was significantly reduced in group 'P'. Mean head-up time and mean walking time were not significantly differed. In group 'K', brief muscle rigidity, head waving and licking during recovery were observed. In conclusion, infusion rate of ketamine (0.1 mg/ kg/min) with remifentanil (0.5 ${\mu}g$/kg/min) is an appropriate for obtaining the surgical plane of anesthesia. These results showed that group 'K' had better cardiopulmonary function than group 'P'. That is, remifentanil/ketamine CRI is better TIVA protocol than remifentanil/propofol CRI for 3 hr surgery.

비글견에서 remifentanil/ketamine 점적 투여 병용마취법과 remifentanil/propofol 점적 투여 병용마취법이 심폐기능에 미치는 영향에 대하여 비교평가하였다. 14 마리의 비글견을 이용하였다. 실험견은 acepromazine (0.1 mg/kg, 피하)과 medetomidine (20 ${\mu}g$/kg, 정맥내)으로 전처치하고, Group P는 정맥 내 propofol 1 mg/kg, Group K는 정맥 내 ketamine 5 mg/kg으로 마취 유도 하고, 이 후 실험군별로 고정된 용량의 remifentanil (0.5 ${\mu}g$/kg/min)과 ketamine 0.1 mg/kg/min 또는 propofol 0.3 mg/kg/min을 3 시간 동안 투여하였다 (Group K와 Group P). 동맥혈압, 심박수, 호흡 수, 혈액가스분석과 마취회복기 동안의 행동변화를 측정하였다. 또한 toe-web clamping 검사를 통해 마취 깊이를 평가하였다. 외과적 마취기는 두 군 모두에서 전 시간 동안 유지가 되었다. Group K의 수축기 동맥혈압, 평균 동맥혈압, 동맥산소 분압, 동맥 산소 포화도는 Group P에 비해 정상 범위 내에서 현저히 높았으며 Group K의 이산화탄소 분압은 Group P에 비해 현저히 낮았다. 그러나 이완기 동맥혈압, 심박수, 호흡수에서는 현저한 차이가 없었다. 점적투여 중단시점부터 발관까지의 평균시간은 Group K에서 현저히 감소되었지만, 평균 sitting time은 Group P에서 현저히 감소되었다. 평균 head-up time과 평균 walking time은 현저한 차이가 없었다. Group K에서는 약간의 근강직, 머리 흔듬, 혀로 핥는 동작이 회복기에 관찰되었다. 결론적으로, Group K가 Group P보다 심폐 기능에서 더 좋았다. 즉, remifentanil/ketamine을 이용한 점적투여 병용마취법이 remifentanil/propofol을 이용한 점적투여 병용마취법 보다 3 시간의 마취 유지에서 보다 나은 방법으로 판단되었다.

Keywords

References

  1. Beers R and Camporesi E: Remifentanil update: clinical science and utility. CNS Drugs 2004; 18: 1085-1104. https://doi.org/10.2165/00023210-200418150-00004
  2. Bergadano A, Andersen OK, Arendt-Nielsen L, Theurillat R, Thormann W, and Spadavecchia C: Plasma levels of a lowdose constant-rate-infusion of ketamine and its effect on single and repeated nociceptive stimuli in conscious dogs. Vet J 2009; 182: 252-260. https://doi.org/10.1016/j.tvjl.2008.06.003
  3. Correll GE, Maleki J, Gracely EJ, Muir JJ, and Harbut RE: Subanesthetic ketamine infusion therapy: a retrospective analysis of a novel therapeutic approach to complex regional pain syndrome. Pain Med 2004; 5: 263-275. https://doi.org/10.1111/j.1526-4637.2004.04043.x
  4. Criado AB and Gomez e Segura IA: Reduction of isoflurane MAC by fentanyl or remifentanil in rats. Vet Anaesth Analg 2003; 30: 250-256. https://doi.org/10.1046/j.1467-2995.2003.00123.x
  5. Dershwitz M, Hoke JF, Rosow CE, Michalowski P, Connors PM, Muir KT, and Dienstag JL: Pharmacokinetics and pharmacodynamics of remifentanil in volunteer subjects with severe liver disease. Anesthesiology 1996; 84: 812-820. https://doi.org/10.1097/00000542-199604000-00008
  6. Egan TD: Pharmacokinetics and pharmacodynamics of remifentanil: an update in the year 2000. Curr Opin Anaesthesiol 2000; 13: 449-455. https://doi.org/10.1097/00001503-200008000-00009
  7. Feldman PL, James MK, Brackeen MF, Bilotta JM, Schuster SV, Lahey AP, Lutz MW, Johnson MR, and Leighton HJ: Design, synthesis, and pharmacological evaluation of ultrashort- to long-acting opioid analgetics. J Med Chem 1991; 34: 2202-2208. https://doi.org/10.1021/jm00111a041
  8. Ferreira TH, Aguiar AJ, Valverde A, Neto FJ, Steagall PV, and Soares JH: Effect of remifentanil hydrochloride administered via constant rate infusion on the minimum alveolar concentration of isoflurane in cats. Am J Vet Res 2009; 70: 581-588. https://doi.org/10.2460/ajvr.70.5.581
  9. Glass PS, Hardman D, Kamiyama Y, Quill TJ, Marton G, Donn KH, Grosse CM, and Hermann D: Preliminary pharmacokinetics and pharmacodynamics of an ultra-short-acting opioid: remifentanil (GI87084B). Anesth Analg 1993; 77: 1031-1040.
  10. Gooding JM, Dimick AR, Tavakoli M, and Corssen G: A physiologic analysis of cardiopulmonary responses to ketamine anesthesia in noncardiac patients. Anesth Analg 1977; 56: 813-816.
  11. Greene SA, Thurmon JC, Tranquilli WJ, and Benson GJ: Cardiopulmonary effects of continuous intravenous infusion of guaifenesin, ketamine, and xylazine in ponies. Am J Vet Res 1986; 47: 2364-2367.
  12. Gurses E, Sungurtekin H, Tomatir E, and Dogan H: Assessing propofol induction of anesthesia dose using bispectral index analysis. Anesth Analg 2004; 98: 128-231.
  13. Haskins SC, Farver TB, and Patz JD: Ketamine in dogs. Am J Vet Res 1985; 46: 1855-1860.
  14. Hodgson DS, Steffey EP, Grandy JL, and Woliner MJ: Effects of spontaneous, assisted, and controlled ventilatory modes in halothane-anesthetized geldings. Am J Vet Res 1986; 47: 992-996.
  15. Hoke JF, Cunningham F, James MK, Muir KT, and Hoffman WE: Comparative pharmacokinetics and pharmacodynamics of remifentanil, its principle metabolite (GR90291) and alfentanil in dogs. J Pharmacol Exp Ther 1997; 281: 226-232.
  16. Jang HS, Choi HS, and Lee MG: Effects of propofol administration rates on cardiopulmonary function and anaesthetic depth during anaesthetic induction in rats. Vet Anaesth Analg 2009; 36: 239-245. https://doi.org/10.1111/j.1467-2995.2009.00456.x
  17. Jonsson MM, Lindahl SG, and Eriksson LI: Effect of propofol on carotid body chemosensitivity and cholinergic chemotransduction. Anesthesiology 2005; 102: 110-116. https://doi.org/10.1097/00000542-200501000-00019
  18. Kabbaj M, Vachon P, and Varin F: Impact of peripheral elimination on the concentration-effect relationship of remifentanil in anaesthetized dogs. Br J Anaesth 2005; 94: 357-365. https://doi.org/10.1093/bja/aei058
  19. Larsson JE and Wahlstrom G: Optimum rate of administration of propofol for induction of anaesthesia in rats. Br J Anaesth 1994; 73: 692-694. https://doi.org/10.1093/bja/73.5.692
  20. Lin HC. Dissociative anesthetics. In: Veterinary anesthesia, Baltimore:Williams & Wilkins, 1996: 241-296.
  21. Longnecker DE and Sturgill BC: Influence of anesthetic agent on survival following hemorrhage. Anesthesiology 1976; 45: 516-521. https://doi.org/10.1097/00000542-197611000-00008
  22. Luna SP, Taylor PM, and Wheeler MJ: Cardiorespiratory, endocrine and metabolic changes in ponies undergoing intravenous or inhalation anaesthesia. J Vet Pharmacol Ther 1996; 19: 251-258. https://doi.org/10.1111/j.1365-2885.1996.tb00046.x
  23. Mair AR, Pawson P, Courcier E, and Flaherty D: A comparison of the effects of two different doses of ketamine used for co-induction of anaesthesia with a target-controlled infusion of propofol in dogs. Vet Anaesth Analg 2009; 36: 532-538. https://doi.org/10.1111/j.1467-2995.2009.00500.x
  24. Mankikian B, Cantineau JP, Sartene R, Clergue F, and Viars P: Ventilatory pattern and chest wall mechanics during ketamine anesthesia in humans. Anesthesiology 1986; 65: 492-499. https://doi.org/10.1097/00000542-198611000-00007
  25. McMurphy RM, Young LE, Marlin DJ, and Walsh K: Comparison of the cardiopulmonary effects of anesthesia maintained by continuous infusion of romifidine, guaifenesin, and ketamine with anesthesia maintained by inhalation of halothane in horses. Am J Vet Res 2002; 63: 1655-1661. https://doi.org/10.2460/ajvr.2002.63.1655
  26. Monteiro ER, Teixeira-Neto FJ, Campagnol D, Alvaides RK, Garofalo NA, and Matsubara LM: Effects of remifentanil on the minimum alveolar concentration of isoflurane in dogs. Am J Vet Res 2010; 71: 150-156. https://doi.org/10.2460/ajvr.71.2.150
  27. Moustafa AM, Negmi HH, and Rabie ME: The combined effect of ketamine and remifentanil infusions as total intravenous anesthesia for scoliosis surgery in children. Middle East J Anesthesiol 2008; 19: 1151-1168.
  28. Muir WW, 3rd, Wiese AJ, and March PA: Effects of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine drug combination on minimum alveolar concentration in dogs anesthetized with isoflurane. Am J Vet Res 2003; 64: 1155-1160. https://doi.org/10.2460/ajvr.2003.64.1155
  29. Murrell JC, van Notten RW, and Hellebrekers LJ: Clinical investigation of remifentanil and propofol for the total intravenous anaesthesia of dogs. Vet Rec 2005; 156: 804-808. https://doi.org/10.1136/vr.156.25.804
  30. Musk GC and Flaherty DA: Target-controlled infusion of propofol combined with variable rate infusion of remifentanil for anaesthesia of a dog with patent ductus arteriosus. Vet Anaesth Analg 2007; 34: 359-364. https://doi.org/10.1111/j.1467-2995.2006.00332.x
  31. Mustola ST, Baer GA, Neuvonen PJ, and Toivonen KJ: Requirements of propofol at different end-points without adjuvant and during two different steady infusions of remifentanil. Acta Anaesthesiol Scand 2005; 49: 215-221. https://doi.org/10.1111/j.1399-6576.2004.00582.x
  32. Nolan A and Reid J: Pharmacokinetics of propofol administered by infusion in dogs undergoing surgery. Br J Anaesth 1993; 70: 546-551. https://doi.org/10.1093/bja/70.5.546
  33. O'Hare RA, Mirakhur RK, Reid JE, Breslin DS, and Hayes A: Recovery from propofol anaesthesia supplemented with remifentanil. Br J Anaesth 2001; 86: 361-365. https://doi.org/10.1093/bja/86.3.361
  34. Pagel PS and Warltier DC: Negative inotropic effects of propofol as evaluated by the regional preload recruitable stroke work relationship in chronically instrumented dogs. Anesthesiology 1993; 78: 100-108. https://doi.org/10.1097/00000542-199301000-00015
  35. Pascoe PJ, Ilkiw JE, and Frischmeyer KJ: The effect of the duration of propofol administration on recovery from anesthesia in cats. Vet Anaesth Analg 2006; 33: 2-7. https://doi.org/10.1111/j.1467-2995.2005.00216.x
  36. Peterbauer C, Larenza PM, Knobloch M, Theurillat R, Thormann W, Mevissen M, and Spadavecchia C: Effects of a low dose infusion of racemic and S-ketamine on the nociceptive withdrawal reflex in standing ponies. Vet Anaesth Analg 2008; 35: 414-423. https://doi.org/10.1111/j.1467-2995.2008.00402.x
  37. Shulman D, Beardsmore CS, Aronson HB, and Godfrey S: The effect of ketamine on the functional residual capacity in young children. Anesthesiology 1985; 62: 551-556. https://doi.org/10.1097/00000542-198505000-00001
  38. Smith G, Thorburn J, Vance JP, and Brown DM: The effects of ketamine on the canine coronary circulation. Anaesthesia 1979; 34: 555-561. https://doi.org/10.1111/j.1365-2044.1979.tb06341.x
  39. Smith JA, Gaynor JS, Bednarski RM, and Muir WW: Adverse effects of administration of propofol with various preanesthetic regimens in dogs. J Am Vet Med Assoc 1993; 202: 1111-1115.
  40. Spotoft H, Korshin JD, Sorensen MB, and Skovsted P: The cardiovascular effects of ketamine used for induction of anaesthesia in patients with valvular heart disease. Can Anaesth Soc J 1979; 26: 463-467. https://doi.org/10.1007/BF03006157
  41. Steffey EP. Inhalation anesthetics and gases. In: Equine anesthesia, St Louis: Mosby, 1991: 352-379.
  42. Stokes DN and Hutton P: Rate-dependent induction phenomena with propofol: implications for the relative potency of intravenous anesthetics. Anesth Analg 1991; 72: 578-583.
  43. Waxman K, Shoemaker WC, and Lippmann M: Cardiovascular effects of anesthetic induction with ketamine. Anesth Analg 1980; 59: 355-358.
  44. Wilson J, Doherty TJ, Egger CM, Fidler A, Cox S, and Rohrbach B: Effects of intravenous lidocaine, ketamine, and the combination on the minimum alveolar concentration of sevoflurane in dogs. Vet Anaesth Analg 2008; 35: 289-296. https://doi.org/10.1111/j.1467-2995.2007.00389.x
  45. Wong DH and Jenkins LC: An experimental study of the mechanism of action of ketamine on the central nervous system. Can Anaesth Soc J 1974; 21: 57-67. https://doi.org/10.1007/BF03004579
  46. Wouters PF, Van de Velde MA, Marcus MA, Deruyter HA, and Van Aken H: Hemodynamic changes during induction of anesthesia with eltanolone and propofol in dogs. Anesth Analg 1995; 81: 125-131.
  47. Wright M: Pharmacologic effects of ketamine and its use in veterinary medicine. J Am Vet Med Assoc 1982; 180: 1462-1471.
  48. Zacny JP, Coalson DW, Young CJ, Klafta JM, Lichtor JL, Rupani G, Thapar P, and Apfelbaum JL: Propofol at conscious sedation doses produces mild analgesia to cold pressor-induced pain in healthy volunteers. J Clin Anesth 1996; 8: 469-474. https://doi.org/10.1016/0952-8180(96)00126-2