DOI QR코드

DOI QR Code

Non-hydrostatic modeling of nonlinear waves in a circular channel

비정수압 모형을 이용한 원형 수로에서 비선형 파랑의 해석

  • Choi, Doo-Yong (K-water Research Institute, Korea Water Resources Corporation)
  • 최두용 (한국수자원공사 K-water연구원)
  • Received : 2011.06.20
  • Accepted : 2011.10.17
  • Published : 2011.10.31

Abstract

A curvilinear non-hydrostatic free surface model is developed to investigate nonlinear wave interactions in a circular channel. The proposed model solves the unsteady Navier-Stokes equations in a three-dimensional domain with a pressure correction method, which is one of fractional step methods. A hybrid staggered-grid layout in the vertical direction is implemented, which renders relatively simple resulting pressure equation as well as free surface closure. Numerical accuracy with respect to wave nonlinearity is tested against the fifth-order Stokes solution in a two-dimensional numerical wave tank. Numerical applications center on the evolution of nonlinear waves including diffraction and reflection affected by the curvature of side wall in a circular channel comparing with linear waves. Except for a highly nonlinear bichrmatic wave, the model's results are in good agreement with superimposed analytical solution that neglects nonlinear effects. Through the numerical simulation of the highly nonlinear bichramatic wave, the model shows its capability to investigate the evolution of nonlinear wave groups in a circular channel.

곡면의 경계를 가지는 수로에서 비선형 파랑의 상호작용을 모의하기 위한 비정수압 자유수면 모형이 개발되었다. 제안된 모형은 비선형의 3차원 Navier-Stokes 방정식을 곡선좌표 영역에서 계산단계 분리법의 일종인 압력수정법에 의하여 수치적으로 해석된다. 특히, 연직방향으로 변형된 형태의 엇갈린 격자를 이용하여 상대적으로 간단하게 압력방정식과 자유수면 경계조건을 구성하였다. 개발된 모형의 수치해석 정확도는 2차원의 수치 파수조에서 파랑의 비선형 정도에 대하여 5차의 스토스우크스 해석해와 비교하였다. 본 모형의 실제적 적용은 원형의 수로에서 회절과 반사에 의해 변형되는 비선형 파의 변형에 초점을 맞추어 수행하였다. 두개의 파를 중첩한 고비선형의 파에 대한 경우를 제외하고 수치해석 결과는 비선형적인 영향을 고려하지 않은 해석해의 선형적인 중첩과 일치하였다. 두개의 파를 중첩한 고비선형의 파에 대한 모의를 통하여 본 모형은 원형의 수로에서 비선형 군파의 변형에관한 수치적인 모의 가능성을 제시하였다.

Keywords

References

  1. Ai, C., Jin, S. and Lv, B. (2010). A new fully non-hydrostatic 3D free surface flow model for water wave motions. Int. J. Numer. Meth. Fluids, DOI: 10.1002/fld.2317.
  2. Armfield, S. and Street, R. (2002). An analysis and comparison of the time accuracy of fractionalstep methods for the Navier-Stokes equations on staggered grids. Int. J. Numer. Meth . Fluids, 38, 255-282. https://doi.org/10.1002/fld.217
  3. Beji, S. and Nadaoka, K. (2004). Fully dispersive nonlinear water wave model in curvilinear coordinates. Journal of Computational Physics, 198, 645-658. https://doi.org/10.1016/j.jcp.2003.12.022
  4. Bradford, S. F. (2005). Gonunovbased model for non-hydrostatic wave dynamics. Journal of Waterway, Port, Coastal and Ocean Engineering, 131(5), 226-238. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:5(226)
  5. Casulli, V. (1999). A semiimplicit finite difference method for nonhydrostatic, freesurface flows. International Journal for Numerical Methods in Fluids, 30, 425-440. https://doi.org/10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
  6. Casulli, V. and Cheng, R. T. (1992). Semiimplicit finite difference methods for three-dimensional shallow water flow. International Journal for Numerical Methods in Fluids, 15, 629-648. https://doi.org/10.1002/fld.1650150602
  7. Choi, D. Y., Wu, C. H. and Young, C.C. (2011). An efficient curvilinear non-hydrostatic model for simulating surface water waves. Int. J. Numer. Meth. Fluids, 66(9), 1093-1115. https://doi.org/10.1002/fld.2302
  8. Fenton, J. D. (1985). A fifth-order Stokes theory for steady waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 111(2), 216-234. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(216)
  9. Harlow, F. H. and Welch, J. E. (1965). Numerical calculation of timedependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8, 2182-2189. https://doi.org/10.1063/1.1761178
  10. Hirt, C. W. and Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamic of free boundaries. Journal of Computational Physics, 39, 201-255. https://doi.org/10.1016/0021-9991(81)90145-5
  11. Kang, D. and Fringer, O. B. Time accuracy for pressure methods for non-hydrostatic freesurface flows. Proceedings of the 9th International Conference on Estuarine and Coastal Modeling, 419-433.
  12. Kirby, J. T. (1988). Parabolic wave computations in nonorthogonal coordinate systems. Journal of Waterway, Port, Coastal and Ocean Engineering, 114, 673-685. https://doi.org/10.1061/(ASCE)0733-950X(1988)114:6(673)
  13. Kirby, J. T., Dalrymple, R. A. and Kaku, H. (1994). Parabolic approximations for water waves in conformal coordinate systems. Coastal Engineering, 23, 185-213. https://doi.org/10.1016/0378-3839(94)90001-9
  14. Li, B. and Fleming, C. A. (2001). three-dimensional model of Navier-Stokes equations for water waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 127(1), 16-25. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:1(16)
  15. Li, Y. S. and Zhan, J. M. (2001). Boussinesqtype model with boundaryfitted coordinate system. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(3), 152-160. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:3(152)
  16. Lin, P. and Li, C. W. (2002). A scoordinate three-dimensional numerical model for surface wave propagation. International Journal for Numerical Methods in Fluids, 38, 1045-1068. https://doi.org/10.1002/fld.258
  17. Mahadevan, A., Oliger, J. and Street, R. (1996). A non-hydrostatic mesoscale ocean model. Part II: numerical implementation. Journal of Physical Oceanography, 26, 1881-1900. https://doi.org/10.1175/1520-0485(1996)026<1881:ANMOMP>2.0.CO;2
  18. Mayer, S., Garapon, A. and Sorensen, L. S. (1998). A fractional step method for unsteady freesurface flow with applications to nonlinear wave dynamics. International Journal for Numerical Methods in Fluids, 28, 293-315. https://doi.org/10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1
  19. Rostafinski, W. (1972). Propagation of long waves in curved ducts. Journal of Acoustic Society of America, 52(2), 1411-1420. https://doi.org/10.1121/1.1913254
  20. Rostafinski, W. (1976). Acoustic systems containing curved duct sections. Journal of Acoustic Society of America, 60, 23-28. https://doi.org/10.1121/1.381069
  21. Shi, A., Teng, M. and Wu, T. Y. (1998). Propagation of solitary waves through significantly curved shallow water channels. Journal of Fluid Mechanics, 362, 157-176. https://doi.org/10.1017/S0022112098008945
  22. Shi, F. and Kirby, J. T. (2005). Curvilinear parabolic approximation for surface wave transformation with wavecurrent interaction. Journal of Computational Physics, 204, 562-586. https://doi.org/10.1016/j.jcp.2004.10.022
  23. Stelling, G. S. and Zijlema, M. (2003). An accurate and efficient finitedifference algorithm for non-hydrostatic freesurface flow with application to wave propagation. International Journal for Numerical Methods in Fluids, 43, 1-23. https://doi.org/10.1002/fld.595
  24. Young, C.C., Wu, C. H., Liu, W.C. and Kuo, J.T. (2009). A higherorder non-hydrostatic s model for simulating nonlinear refractiondiffraction of water waves. Coastal Engineering, 56, 919-930. https://doi.org/10.1016/j.coastaleng.2009.05.004
  25. Yuan, H. and Wu, C. H. (2004). An implicit 3D fully non-hydrostatic model for freesurface flows. Internaltional Journal for Numerical Methods in Fluids, 46, 709-733. https://doi.org/10.1002/fld.778
  26. Zhang, H., Zhu, L. and You, Y. (2005). A numerical model for wave propagation in curvilinear coordinates. Coastal Engineering, 52, 513-533. https://doi.org/10.1016/j.coastaleng.2005.02.004