DOI QR코드

DOI QR Code

Effect of thread design on the marginal bone stresses around dental implant

임플란트 나사산 디자인이 변연골 응력에 미치는 영향

  • Lee, Sang-Hyun (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Jo, Kwang-Heon (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 이상현 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 조광헌 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 이규복 (경북대학교 치의학전문대학원 치과보철학교실)
  • Received : 2011.01.05
  • Accepted : 2011.10.24
  • Published : 2011.10.31

Abstract

Purpose: The purpose of this study was to investigate the effect of different thread designs on the marginal bone stresses around dental implant. Materials and methods: Standard ITI implant(ITI Dental Implant System; Straumann AG, Waldenburg, Switzerland), 4.1 mm in diameter and 10 mm in length, was selected as control. Test implants of four different thread patterns were created based on control implant, i.e. maintaining all geometrical design of control implant except thread pattern. Four thread designs used in test implants include (1) small V-shape screw (model A), (2) large V-shape screw (model B), (3) buttress screw (model C), and (4) trapezoid screw (model D). Surface area for unit length of implant was 14.4 $mm^2$ (control), 21.7 (small V-shape screw), 20.6 (large V-shape screw), 17.0 (buttress screw) and 28.7 $mm^2$ (trapezoid screw). Finite element models of implant/bone complex were created using an axisymmetric scheme with the use of NISA II/DISPLAY III (Engineering Mechanics Research Corporation, Troy, MI, USA). A load of 100 N applied to the central node on the crown top either in parallel direction or at 30 degree to the implant axis (in order to apply non-axial load to the implant NKTP type 34 element was employed). Quantification and comparison of the peak stress in the marginal bone of each implant model was made using a series of regression analyses based on the stress data calculated at the 5 reference points which were set at 0.2, 0.4, 0.6, 0.8 and 1.0 mm from implant wall on the marginal bone surface. Results: Results showed that although severe stress concentration on the marginal bone cannot be avoided a substantial reduction in the peak stress is achievable using different thread design. The peak marginal bone stresses under vertical loading condition were 7.84, 6.45, 5.96, 6.85, 5.39 MPa for control and model A, B, C and D, respectively. And 29.18, 26.45, 25.12, 27.37, 23.58 MPa when subject to inclined loading. Conclusion: It was concluded that the thread design is an important influential factor to the marginal bone stresses.

연구 목적: 본 연구의 목적은 치과용 임플란트 나사산 디자인이 변연골 응력에 미치는 영향에 정량적인 분석을 하고자 한다. 연구 재료 및 방법: 외경 4.1 mm (경부직경 3.5 mm), 매식부 길이 10 m인 표준형 ITI 임플란트 시스템(ITI Dental Implant System; Straumann AG, Waldenburg, Switzerland)을 기본모델(대조모델)로 채택하고, 그 몸체의 나사산은 다른 임플란트 시스템에 채택되고 있는 삼각형, 사각형, buttres형 디자인을 가지는 가상의 해석모델을 4종 만들었다. 해석모델은 나사산 형태와 크기에 따라 (1) 모델 A (작은 삼각형 나사산), (2) 모델 B (큰 삼각형 나사산), (3) 모델 C (buttres형 나사산), 및 (4) 모델 D (사각형 나사산)로 구분하였다. 유한요소 모델링과 해석에는 NISA II/DISPLAY III (Engineering Mechanics Research Corporation, Troy, MI, USA) 프로그램을 사용하였다. Mesh 구성에는 NKTP type 34형 solid 요소(4각형 축대칭 요소, 요소당 절점수 8개)를 사용하여 임플란트 장축과 평행한 축대칭 하중은 물론 장축과 경사각을 갖는 비축대칭 하중조건을 모두 해석할 수 있도록 하였다. 임플란트의 표면으로부터 각각 0.2, 0.4, 0.6, 0.8, 1.0 mm 떨어진 위치에 5개의 응력관찰점(stress monitoring point)을 설정 하여 기록된 응력 값으로부터 회귀분석을 통하여 변연골 응력 최대값(peak stress)을 정량화하였다. 해석에 사용한 하중 조건은 2가지로, 임플란트 축에 평행한 수직하중 100 N과 임플란트 축과 $30^{\circ}$를 이루는 경사력 100 N 조건이었다. 결과: 임플란트 경부와 접하고 있는 인접 변연골에 응력집중현상이 보이고 있었으며, 그 양상은 임플란트 나사산 디자인과 무관하게 거의 유사하게 관찰되었다. 수직력 100 N 조건에서 산출된 변연골 최대응력값은 대조모델과 실험모델 A, B, C, D에서 7.84, 6.45, 5.96, 6.85, 5.39 MPa이었고, 경사력 조건에서는 각각 29.18, 26.45, 25.12, 27.37, 23.58 MPa이었다. 결론: 임플란트 나사산의 디자인은 변연골의 응력에 영향을 미치는 중요한 요소이다.

Keywords

References

  1. Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants 2000;15:15- 46.
  2. Bidez MW, Misch CE. Force transfer in implant dentistry: basic concepts and principles. J Oral Implantol 1992;18:264-74.
  3. Rieger MR, Adams WK, Kinzel GL. A finite element survey of eleven endosseous implants. J Prosthet Dent 1990;63:457-65. https://doi.org/10.1016/0022-3913(90)90238-8
  4. O Brien GR, Gonshor A, Balfour A. A 6-year prospective study of 620 stress-diversion surface (SDS) dental implants. J Oral Implantol 2004;30:350-7. https://doi.org/10.1563/0.699.1
  5. Gotfredsen K, Berglundh T, Lindhe J. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II). Clin Oral Implants Res 2001;12:196-201. https://doi.org/10.1034/j.1600-0501.2001.012003196.x
  6. Misch CE. Dental implant prosthetics. St Louis, Mosby, 2005. pp. 322-47.
  7. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74. https://doi.org/10.1046/j.1365-2842.2002.00891.x
  8. Kong L, Hu K, Li D, Song Y, Yang J, Wu Z, Liu B. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2008;23:65- 74.
  9. Seo YH, Vang MS, Yang HS, Park SW, Park HO, Lim HP. Threedimentional finite element analysis of stress distribution for different implant thread slope. J Korean Acad Prosthodont 2007;45:482-91.
  10. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58. https://doi.org/10.1016/S0021-9290(03)00164-7
  11. Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil 2004;31:233-9. https://doi.org/10.1046/j.0305-182X.2003.01213.x
  12. Kong L, Liu B, Li D, Song Y, Zhang A, Dang F, Qin X, Yang J. Comparative study of 12 thread shapes of dental implant designs: a three-dimensional finite element analysis. World J Model Simul 2006;2:134-40.
  13. Sevimay M, Turhan F, Kiliçarslan MA, Eskitascioglu G. Threedimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 2005;93:227-34. https://doi.org/10.1016/j.prosdent.2004.12.019
  14. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. 3DFEA of osseointegration percentages and patterns on implant-bone interfacial stresses. J Dent 1997;25:485-91. https://doi.org/10.1016/S0300-5712(96)00061-9
  15. Yu W, Jang YJ, Kyung HM. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: a quantitative approach. Int J Oral Maxillofac Implants 2009;24:88-95.
  16. Langer B, Langer L, Herrmann I, Jorneus L. The wide fixture: a solution for special bone situations and a rescue for the compromised implant. Part 1. Int J Oral Maxillofac Implants 1993; 8:400-8.
  17. Schrotenboer J, Tsao YP, Kinariwala V, Wang HL. Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol 2008;79:2166-72. https://doi.org/10.1902/jop.2008.080178
  18. Lee JH, Frias V, Lee KW, Wright RF. Effect of implant size and shape on implant success rates: a literature review. J Prosthet Dent 2005;94:377-81. https://doi.org/10.1016/j.prosdent.2005.04.018
  19. Yoon H, Jung UW, Lee J, Kim CS, Kim J, Cho KS, Kim CK, Cho S. Contact non-linear finite element model analysis of initial stability of mini implant. J Korean Acad Periodontol 2007;37: 681-90. https://doi.org/10.5051/jkape.2007.37.4.681
  20. Himmlova L, Dostalova′T, KacovskyA, Konvickova S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 2004;91:20-5. https://doi.org/10.1016/j.prosdent.2003.08.008
  21. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis-a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998;24:80-8. https://doi.org/10.1563/1548-1336(1998)024<0080:EPOODI>2.3.CO;2
  22. Lin S, Shi S, LeGeros RZ, LeGeros JP. Three-dimensional finite element analyses of four designs of a high-strength silicon nitride implant. Implant Dent 2000;9:53-60. https://doi.org/10.1097/00008505-200009010-00010
  23. Misch CE. Implant design considerations for the posterior regions of the mouth. Implant Dent 1999;8:376-86. https://doi.org/10.1097/00008505-199904000-00008
  24. Misch CE, Bidez MW, Sharawy M. A bioengineered implant for a predetermined bone cellular response to loading forces. A literature review and case report. J Periodontol 2001;72:1276-86. https://doi.org/10.1902/jop.2000.72.9.1276
  25. Misch CE, Poitras Y, Dietsh-Misch F. Endosteal Implants in the Edentulous Posterior Maxilla: Rationale and Clinical Report. Oral Health 2000;8:7-16.