DOI QR코드

DOI QR Code

유연 솔더와 무연 솔더의 점소성 변형거동 평가

Assessment of Viscoplastic Deformation Behavior of Eutectic Solder and Lead-free Solder

  • 이봉희 (한국전력기술 배관기술그룹) ;
  • 주진원 (충북대학교 기계공학부)
  • Lee, Bong-Hee (Plant Design Department, KEPCO E&C) ;
  • Joo, Jin-Won (Department of Mechanical Engineering, Chungbuk National University)
  • 투고 : 2011.05.12
  • 심사 : 2011.06.15
  • 발행 : 2011.08.31

초록

본 논문에서는 솔더의 온도 변화에 따른 변형 거동을 평가하기 위하여 솔더 재료의 열변형 거동을 파악할 수 있는 전단시편을 고안하여 온도변화에 따르는 열변형 실험과 유한요소해석을 수행하였다. 전단시편은 열팽창계수가 다른 두 금속 막대와 그 사이 공간에 접합된 솔더로 구성되어 있으며, 솔더는 유연 솔더 (Sn/36Pb/2Ag)와 무연 솔더 (Sn/3.0Ag/0.5Cu) 두가지를 대상으로 하였다. 실시간 무아레 간섭계를 이용하여 세 온도 사이클 동안의 각 온도단계에서 변 위 분포를 나타내는 간섭무늬를 얻고 그로부터 온도에 따른 유연 솔더와 무연 솔더의 열변형 특성을 비교하였다. 유한요소해석을 통하여 여러 연구자가 제시한 솔더의 점소성 물성치를 평가하였으며 유연 솔더의 경우에는 Darveaux가 제안한 Anand 모델, 무연 솔더의 경우 Chang이 제안한 Anand 모델을 사용한 해석 결과가 실험 결과와 가장 일치한다는 것을 밝혔다. 평가된 재료 모델을 사용하여 무연 솔더와 유연 솔더가 포함된 전단시편을 유한요소 해석하고 솔더의 점소성 거동 을 자세하게 분석하였다.

This paper describes an experimental study and finite element analysis (FEA) carried out for investigating thermal deformation behavior of solders, resulting from temperature change in the solder. With such a goal in mind, a shear specimen that was composed of two metal bars having different coefficient of thermal expansion and solder blocks placed between two bars was designed and fabricated. Two different types of solder blocks, eutectic solder (Sn/36Pb/ 2Ag) and lead-free solder (Sn/3.0Ag/0.5Cu) were tested as well. Fringe patterns for several temperature steps were recorded and analyzed for three temperature cycles using a real-time moir$\acute{e}$ setup. The experimental data was verified with FEA and used to evaluate the suitability for numerous solder constitutive models available in literatures. FEA employing Anand material model suggested by Darveaux et al. and Chang et al. were found to be in an excellent agreement with the experimental results for the eutectic solder and the lead-free solder, respectively. In addition, numerical predictions on bending displacement, shear strain and viscoplastic distortion energy are documented and viscoplastic deformation behavior of two types of solder material are compared.

키워드

참고문헌

  1. J. S. Corbin, "Finite Element Analysis for Solder Ball Connect (SBC) Structural design Optimization", IBM J. Research Development, 37, 585(1993).
  2. T. Lee and L. Jung, "Finite Element Analysis for Solder Ball Failures in Chip Scale Packages", Microelectronics and Reliability, 38(2), 1941 (1998). https://doi.org/10.1016/S0026-2714(98)00163-2
  3. S. C. Chen, Y. C. Lin and C. H. Cheng, "The Numerical Analysis of Strain Behavior at the Solder Joint and Interface in a Flip Chip Package", J. Materials Processing Technology, 171, 125(2006). https://doi.org/10.1016/j.jmatprotec.2005.06.061
  4. I. N. Jang, J. H. Park and Y. S. Ahn, "Mechanical Characteristic Evaluation of Sn-Ag-Cu Lead Free Solder Ball Joint on the Pad Geometry", J. Microelectron. Packag. Soc., 17(2), 41 (2010).
  5. I. Kim, T. Park and S.-B. Lee, "Comparative study of the Fatigue Behavior of SnAgCu and SnPb Solder Joits", Trans. of the KSME(A), 28(12), 1856 (2004).
  6. M. Gonzalez, B. Vandevelde, Jan Vanfleteren and D. Manessis, "Thermo- Mechanical FEM Analysis of Lead Free and Lead Containing Solder for Flip Chip Applications", Proc. EMPC2005, Brugge, Jun. (2005).
  7. Q. Wang, Y. Zhang and L. Liang, "Anand Parameter Test for Pb-Free Material SnAgCu and Life Prediction for a CSP", Proc. ICEPT 2007, Shanghai, Aug. 1 (2007)
  8. X. Chen, G. Chen and M. Sakane, Modified Anand constitutive model for lead-free solder Sn-3.5Ag, Proc. ITHERM '04, Jun., 2, 446 (2004)
  9. John H. Lau and Stephen H. Pan, "Creep Behaviors of Flip Chip on Board With 96.5Sn-3.5Ag and 100In Lead-Free Solder Joints", Intern'l J. of Microcircuits and Electronic Packaging, 24(1) 11(2001)
  10. B. Han, "Recent Advancements of Moire and Microscopic MoiréInterferometry for Thermal Deformation Analysis of Microelectronics Devices", Experimental Mechanics, 38(4), 278 (1998).
  11. S. J. Ham and S. B. Lee, "Measurement of Creep and Relaxation Behaviors of Wafer-level CSP Assembly Using Moire Interferometry", J. Electronic Packaging, Trans. of the ASME, 125(June), 282 (2003).
  12. J. W. Joo, S. Cho and B. Han, "Characterization of Flexural and Thermo- mechanical Behavior of Plastic Ball Grid Array Package Assembly Using Moiré Interferometry", Micrelectronics Reliability, 45(4), 637 (2005). https://doi.org/10.1016/j.microrel.2004.10.006
  13. D. Pollack and B. Han, "Experimental Validation of Unified Constitutive Model of Eutectic Solder", Proc. of Society for Experimental Mechanics (2003).
  14. J. W. Joo and D. H. Kim, "Thermo-mechanical Deformation Analysis of Flip Chip PBGA Packages subjected to Temperature Change", J. Microelectron. Packag. Soc., 13(4), 17 (2006).
  15. N. J. Choi, B. H. Lee and J. W. Joo, "Elastoplastic Behavior and Creep Analysis of Solder in a FC-PBGA Package", J. Microelectron. Packag. Soc., 17(2), 21 (2010).
  16. B. H. Lee, M. K. Kim and J. W. Joo, "Thermo-mechanical Mehavior of WB-PBGA Packages with Pb-Sn Solder and Lead-free solder Using Moiré Interferometry", J. Microelectron. Packag. Soc., 17(3), 17 (2010).
  17. F. Garofalo, "Fundamentals of Creep and Creep-Rupture in Metal", The Macmillian Company, New York (1965).
  18. L. Anand, "Constitutive Equations for Hot-Working of Metal", Inter. J. of Plasticity, 1, 213 (1985).
  19. S. Wiese, E. Meusel and K. J. Wolter, "Microstructural Dependence of Constitutive Properties of Eutectic SnAg and SnAgCu Solder", Proc. of 53th Electronic Components and Technology Conference, 197 (2003).
  20. F. Feustel, S. Wiese and E. Meusel, "Time-Dependent Material Modeling for Finite Element Analyses of Flip Chips", Proceedings of 50th Electronic Components and Technology Conference, 1548 (2000).
  21. R. Darveaux, "Solder Joint Fatigue Life Model", Proceedings of 1997 TMS Annual Meeting, 213 (1997).
  22. G. Z. Wang, Z. N. Cheng, K. Becker and J. Wilde, "Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys", Journal of Electronic Packaging, 123(3), 247 (2001). https://doi.org/10.1115/1.1371781
  23. A. Yeo, C. Lee, and H. L. Pang, "Flip Chip Solder Reliability Analysis Using ViscoPlastic and Elastic-Plastic-Creep Constitutive Models", IEEE Transactions on Components and Packaging Technologies, 29(2), 355 (2006). https://doi.org/10.1109/TCAPT.2006.875893
  24. J. Chang, L. Wang, J. Dirk and X. Xie, "Finite Element Modeling Predicts the Effects of Voids on Thermal Shock Reliability and Thermal Resistance of Power Device", Welding Journal, 85, 63 (2006).
  25. K. Mysore, G. Subbarayan, V. Gupta and R. Zhang, "Constitutive and Aging Behavior of Sn3.0Ag0.5Cu Solder Alloy", IEEE Transactions on Electronics Packaging Manufacturing, 32(4), 221 (2009). https://doi.org/10.1109/TEPM.2009.2024119