DOI QR코드

DOI QR Code

Fabrication and characterization of Mn-Si thermoelectric materials by mechanical alloying

MA법에 의한 Mn-Si계 초미세 열전재료의 제조 및 평가

  • Lee, Chung-Hyo (Dept. of Advanced Materials Science and Engineering, Mokpo National University)
  • 이충효 (목포대학교 신소재공학과)
  • Received : 2011.10.08
  • Accepted : 2011.11.11
  • Published : 2011.12.31

Abstract

The semiconducting $MnSi_{1.73}$ compound has been recognized as a thermoelectric material with excellent oxidation resistance and stable characteristics at elevated temperature. In the present work, we applied mechanical alloying (MA) technique to produce $MnSi_{1.73}$ compound using a mixture of elemental manganese and silicon powders. The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-$K{\alpha}$ radiation, thermal analysis and scanning electron microscopy. Due to the observed larger loss of Si relative to Mn during mechanical alloying of $MnSi_{1.73}$, the starting composition of a mixture Mn-Si was modified to $MnSi_{1.83}$ and then $MnSi_{1.88}$. The single $MnSi_{1.73}$ phase has been obtained by mechanical alloying of $MnSi_{1.88}$ mixture powders for 200 hours. It is also found that the grain size of $MnSi_{1.73}$ compound powders analyzed by Hall plot method is reduced to 40 nm after 200 hours of milling.

반도성 $MnSi_{1.73}$ 화합물은 고온 특성이 우수하고 뛰어난 내산화성을 가진 열전재료로서 알려져 있다. 본 연구에서는 순 Mn 및 Si 분말재료를 출발 원료로 기계적 합금화법(MA)을 적용하여 $MnSi_{1.73}$ 화합물 합성을 실시하였다. MA 처리는 P-5 유성형 볼밀장치를 이용하여 Ar 중에서 행하였다. MA 분말재료의 X선 회절, 열분석 및 전자현미경 분석을 통하여 고상반응을 관찰하였다. MA 공정 중 Si의 손실을 고려하여 화학양론 조성에서 Si 양을 증가시켜 $MnSi_{1.73}$ 화합물 합성을 시도하였다. 그 결과 $MnSi_{1.73}$ 화합물 단상은 $MnSi_{1.88}$ 조성의 혼합 분말을 200시간 볼밀 처리함으로써 얻을 수 있었다. 또한 200시간 볼밀 처리에 의하여 제조된 $MnSi_{1.73}$ 화합물의 평균결정립 크기는 40 nm 임을 X 선 회절피크의 Hall plot으로 부터 알 수 있었다.

Keywords

References

  1. H. Lange, "Electron properties of semiconducting silicides", Phys. Stat. Sol. 201 (1997) 3. https://doi.org/10.1002/1521-3951(199705)201:1<3::AID-PSSB3>3.0.CO;2-W
  2. Y. Isoda, Y. Imai and Y. Shinohara, "The effect of crystal grain size on thermoelectric properties of sintered $\beta-FeSi_{2}$", J. Jpn. Inst. Metals 67 (2003) 410. https://doi.org/10.2320/jinstmet1952.67.8_410
  3. S. Shiga, K. Fujimoto, M. Umemoto and I. Okane, "Thermoelectric properties of $\beta-FeSi_{2}$ prepared by mechanical alloying", J. Jpn. Soc. of Powder and Powder Metallurgy 41 (1994) 1308. https://doi.org/10.2497/jjspm.41.1308
  4. T.B. Massalski, "Binary alloy phase diagrams", 2nd ed. ASM (1990).
  5. C.C. Koch, O.B. Cavin, C.G. Mckamey and J.O. Scarbrough, "Preparation of amorphous $Ni_{60}Nb_{40}$ by mechanical alloying", Appl. Phys. Lett. 43 (1983) 1017. https://doi.org/10.1063/1.94213
  6. U. Mizutani and C.H. Lee, "Effect of mechanical alloying beyond the completion of glass formation for Ni-Zr alloy powders", J. Mater. Sci. 25 (1990) 399. https://doi.org/10.1007/BF00714046
  7. C.H. Lee, "Formation of nanocrystalline $MoSi_{2}$ compound subjected to mechanical alloying", J. Ceram. Proc. Res. 9 (2008) 321.
  8. J. Eckert and L. Schultz, "Glass formation and extended solubilities in mechanically alloyed cobalt-transition metal alloys", J. Less-Common Metals 166 (1990) 293. https://doi.org/10.1016/0022-5088(90)90011-8
  9. K. Suzuki, Y. Homma, K. Suzuki and M. Misawa, "Structural characterization of Ni-V amorphous alloys prepared by mechanical alloying", Mater. Sci. Eng. A134 (1991) 987. https://doi.org/10.1016/0921-5093(91)90907-5
  10. R.B. Schwarz and W.L. Johnson, "Formation of an amorphous alloy by solid state reaction of the pure polycrystalline metals", Phys. Rev. Lett. 51 (1983) 415. https://doi.org/10.1103/PhysRevLett.51.415
  11. W.H. Hall, "Characterization of crystal size and strain by X-ray diffraction", J. Inst. Met. 75 (1948) 1127.
  12. C.H. Lee, T. Fukunaga, Y. Yamada, H. Okamoto and U. Mizutani, "Amorphization process induced by mechanical alloying in immiscible Cu-Ta system", J. Phase Equilibria 14 (1993) 167. https://doi.org/10.1007/BF02667804

Cited by

  1. VAl alloy powders by mechanical alloying vol.23, pp.1, 2013, https://doi.org/10.6111/JKCGCT.2013.23.1.051
  2. compound prepared by mechanical alloying vol.23, pp.3, 2013, https://doi.org/10.6111/JKCGCT.2013.23.3.135