DOI QR코드

DOI QR Code

The sintering characteristics of fly ash-clay system with mine tailing

플라이애쉬-점토-광미계의 소결특성

  • Kim, Kyung-Nam (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Woo, Dong-Myung (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Park, Hyun (Department of Advanced Materials Engineering, Kangwon National University)
  • 김경남 (강원대학교(삼척) 신소재공학과) ;
  • 우동명 (강원대학교(삼척) 신소재공학과) ;
  • 박현 (강원대학교(삼척) 신소재공학과)
  • Received : 2011.09.08
  • Accepted : 2011.11.04
  • Published : 2011.12.31

Abstract

This research was performed to stabilize heavy metals in mine tailing using fly ash and clay. Fly ash-clay-mine tailing system were investigated using XRD (X-ray diffractometer), XRF (X-ray fluorescence spectrometer), TG-DTA, SEM (Scanning Electron Microscope), Dilatometer and UTM with various mine tailing contents (~15 wt%). The fly ash used in this research was mainly composed of $SiO_2$ (33.01 wt%), $Al_2O_3$ (28.54 wt%), $K_2O$ (3.32 wt%), $Fe_2O_3$ (1.47 wt%), CaO(9.97 wt%). $SiO_2$ and $Al_2O_3$ composition of the clay was over 61 wt%. And the mine tailing have high composition of $SiO_2$ (26.91 wt%), CaO (24.25 wt%), $Fe_2O_3$ (22.97 wt%). Therefore, it was estimated that fly ash-clay-mine tailing have enough sintering characteristics. The shrinkage of specimens started at around $850^{\circ}C$ and changed little up to $1100^{\circ}C$, but increased markedly at above $1100^{\circ}C$. The shrinkage rate is strongly related to the decarbonization amount of coal fly ash. As the result of SEM, structure of the specimens with mine tailing addition showed more close than the one without mine tailing. Compressive strength of the specimens with mine tailing was highly increased to approximately 200~420 kgf/$cm^2$, it satisfied the first grade criterion for clay brick by KS L 4201. The specification of leaching characteristics of the sintered specimens were within the Korean regulation standard.

본 연구는 석탄회(Fly Ash)와 점토를 이용하여 광미(tailing)의 중금속 안정화를 연구하였다. 플라이애쉬-점토-광미계의 특성은 여러 분석기기(SEM, XRD, XRF, TG-DTA, Dilatometer, UTM)를 이용하여 광미의 첨가량에 따른 물리 화학적 특성을 조사하였다. 플라이애쉬의 화학조성은 $SiO_2$가 33.01 wt%, $Al_2O_3$는 28.54 wt%, CaO가 9.97 wt%이고 이외에 $Fe_2O_3$와 알카리 성분 등을 함유하고 있으며, 강열감량은 플라이애쉬가 20.26 wt%로 나타났다. 플라이애쉬의 $SiO_2$$Al_2O_3$ 조성양은 점토성분이 61 wt% 이상이다. 그리고 광미의 화학조성은 $SiO_2$가 26.91 wt%, CaO가 24.25 wt%, $Fe_2O_3$는 22.97 wt%이다. 그러므로 플라이애쉬-점토-광미계에서 플라이애쉬가 점토의 원료로 대체가 가능하다. 시편의 수축은 $850^{\circ}C$ 부근에서 서서히 수축이 시작되어 $1100^{\circ}C$ 부근에서 급격하게 수축하는 것을 볼 수 있었으며 플라이애쉬의 탄화 분해 과정에 의해 영향을 받는다. 시편의 미세구조는 광미를 첨가한 시편이 치밀하였다. 열처리 온도에 따른 물리적 특성 조사를 위하여 흡수율과 압축강도를 측정하였으며 광미를 첨가한 시편의 압축강도가 높으며 약 200~420 kgf/$cm^2$로 KS L 4201의 점토 블록 기준 내에 있다. 그리고 광미의 중금속의 안정화는 소결한 후에 한국폐기물 규격내에서 안정화한 것을 알 수 있다.

Keywords

References

  1. N.J. Kim, H.Y. Cho, S.K. Kim, S.W. Kang, S.H. Min and T.Y. Lee, "Removal of hydrogen sulfide using porous artificial aggregates made by coal fly-ash", J. Kor. Soc. of Environ. Eng. 28(4) (2006) 407.
  2. K.N. Kim, J.H. Kwon and D.Y. Shin, "The manufacturing of fly ash-clay system ceramic bricks", J. Kor. Solid Wastes Eng. Soc. 18(5) (2001) 459.
  3. H.Y. Park, S.I. Seo, S.C. Kim and D. S. Kang, "Reburning of bottom ash in a coal-fired power plant and its effect on the plant management", J. Kor. Solid Wastes Eng. Soc. 24(5) (2007) 472.
  4. J.T. Song, S.D. Yun, D.W. Ryou and K. S. Han, "Manufacture and properties of coal fly ash-clay body", J. of the Korean Ceramic Society 33(7) (1996) 771.
  5. Y.S. Chu, J.K. Lee and K. B. Shim, "Preparation of lightweight aggregate using glass abrasive sludge and effects of pores on the aggregate properties", J. Kor. Cera. Soc. 42(1) (2005) 37. https://doi.org/10.4191/KCERS.2005.42.1.037
  6. KS F 2503, "Testing method for density and absorption of coarse aggregate", Korean Standards Association, Korea (2007).
  7. KS L 3305, "Testing method for compressive strength of insulating fire bricks", Korean Standards Association, Korea (2007).
  8. J.S. Shin, "Characterization and agricultural utilization of fly ash", Mineral and Industrial. 8(1) (1995) 10.
  9. K.N. Kim and J.S Park, "Stabilization of heavy metals in mine tailing using coal bottom ash and clay and its recycling", J. Korean Solid Wastes Engineering Society 27(5) (2010) 398.
  10. ASTM C618-92a, "Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as Mineral Admixture in Portland Cement".
  11. K.N. Kim, J.H. Kwon and D.Y. Shin, "The manufacturing of fly ash-clay system ceramic bricks", J. Korean Solid Wastes Engineering Society 18(5) (2001) 459.
  12. J. Leja, "Surface chemistry of froth flotation", Plenum Press, New York (1982) 228.
  13. R.M. Garrels and C.L. Christ, "Solutions, minerals and equilibria", Harper & Row (1965) 450.
  14. K.N. Kim, H.S. Jung and H. Park, "Preparation of Shocrete coarse aggregate with low grade clay and coal ash", Journal of Korean Association of Crystal Growth 20(3) (2010) 147. https://doi.org/10.6111/JKCGCT.2010.20.3.147
  15. J.T. Song, S.D. Yoon, M.S. Ahn and K.S. Han, "Mineral Compositions of the heated coal fly ash", Journal of Korean Association of Crystal Growth 5(2) (1995) 178.