DOI QR코드

DOI QR Code

The microRNA expression profiles of mouse mesenchymal stem cell during chondrogenic differentiation

  • Yang, Bo (Laboratory of Biomechanics, Department of Anatomy, the Third Military Medical University) ;
  • Guo, Hongfeng (Laboratory of Biomechanics, Department of Anatomy, the Third Military Medical University) ;
  • Zhang, Yulan (Laboratory of Biomechanics, Department of Anatomy, the Third Military Medical University) ;
  • Dong, Shiwu (Laboratory of Biomechanics, Department of Anatomy, the Third Military Medical University) ;
  • Ying, Dajun (Laboratory of Biomechanics, Department of Anatomy, the Third Military Medical University)
  • Received : 2010.09.10
  • Accepted : 2010.11.22
  • Published : 2011.01.31

Abstract

MicroRNAs are potential key regulators in mesenchymal stem cells chondrogenic differentiation. However, there were few reports about the accurate effects of miRNAs on chondrogenic differentiation. To investigate the mechanisms of miRNAs-mediated regulation during the process, we performed miRNAs microarray in MSCs at four different stages of TGF-${\beta}3$-induced chondrogenic differentiation. We observed that eight miRNAs were significantly up-regulated and five miRNAs were downregulated. Interestingly, we found two miRNAs clusters, miR-143/145 and miR-132/212, kept on down-regulation in the process. Using bioinformatics approaches, we analyzed the target genes of these differentially expressed miRNAs and found a series of them correlated with the process of chondrogenesis. Furthermore, the qPCR results showed that the up-regulated (or down-regulated) expression of miRNAs were inversely associated with the expression of predicted target genes. Our results first revealed the expression profiles of miRNAs in chondrogenic differentiation of MSCs and provided a new insight on complicated regulation mechanisms of chondrogenesis.

Keywords

References

  1. Barry, F., Boynton, R. E., Liu, B. and Murphy, J. M. (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res. 268, 189-200. https://doi.org/10.1006/excr.2001.5278
  2. Arinzeh, T. L. (2005) Mesenchymal stem cells for bone repair: preclinical studies and potential orthopedic applications. Foot Ankle Clin. 10, 651-665. https://doi.org/10.1016/j.fcl.2005.06.004
  3. Helder, M. N., Knippenberg, M., Klein-Nulend, J. and Wuisman, P. I. (2007) Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng. 13, 1799-1808. https://doi.org/10.1089/ten.2006.0165
  4. Trubiani, O., Orsini, G., Caputi, S. and Piatelli, A. (2006) Adult mesenchymal stem cells in dental research: a new approach for tissue engineering. Int. J. Immunopathol Pharmacol. 19, 451-460. https://doi.org/10.1177/039463200601900301
  5. Hankemeier, S., van Griensven, M., Ezechieli, M., Barkhausen, T., Austin, M., Jagodzinski, M., Meller, R., Bosch, U., Krettek, C. and Zeichen, J. (2007) Tissue engineering of tendons and ligaments by human bone marrow stromal cells in a liquid fibrin matrix in immunodeficient rats: results of a histologic study. Arch. Orthop. Traum. Su. 127, 815-821. https://doi.org/10.1007/s00402-007-0366-z
  6. Kronenberg, H. M. (2006) PTHrP and skeletal development. Ann. N. Y. Acad. Sci. 1068, 1-13. https://doi.org/10.1196/annals.1346.002
  7. Mauck, R. L., Byers, B. A., Yuan, X. and Tuan, R. S. (2007) Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech. Model. Mechanobiol. 6, 113-125. https://doi.org/10.1007/s10237-006-0042-1
  8. Wakitani, S., Imoto, K., Yamamoto, T., Saito, M., Murata, N. and Yoneda, M. (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 10, 199-206. https://doi.org/10.1053/joca.2001.0504
  9. Wakitani, S., Mitsuoka, T., Nakamura, N., Toritsuka, Y., Nakamura, Y. and Horibe, S. (2004) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 13, 595-600. https://doi.org/10.3727/000000004783983747
  10. Butnariu-Ephrat, M., Robinson, D., Mendes, D. G., Halperin, N. and Nevo, Z. (1996) Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin. Orthop. Relat. Res. 330, 234-243. https://doi.org/10.1097/00003086-199609000-00031
  11. Cui, J. H., Park, S. R., Park, K., Choi, B. H. and Min, B. H. (2007) Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo. Tissue Eng. 13, 351-360. https://doi.org/10.1089/ten.2006.0080
  12. Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. https://doi.org/10.1016/j.cell.2004.12.035
  13. Cheng, A. M., Byrom, M. W., Shelton, J. and Ford, L. P. (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic. Acids. Res. 33, 1290-1297. https://doi.org/10.1093/nar/gki200
  14. Chen, C. Z., Li, L., Lodish, H. F. and Bartel, D. P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86. https://doi.org/10.1126/science.1091903
  15. Lakshmipathy, U., Love, B., Goff, L. A., Jornsten, R., Graichen, R., Hart, R. P. and Chesnut, J. D. (2007) MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev. 16, 1003-1016. https://doi.org/10.1089/scd.2007.0026
  16. Chen, C. F., Ridzon, D., Lee, C. T., Blake, J., Sun, Y. M. and Strauss, W. M. (2007) Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm. Genome 18, 316-327. https://doi.org/10.1007/s00335-007-9032-6
  17. Goff, L. A., Boucher, S., Ricupero, C. L., Fenstermacher, S., Swerdel, M., Chase, L. G., Adams, C. C., Chesnut, J., Lakshmipathy, U. and Hart, R. P. (2008) Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis. Experimental Hematology 36, 1354-1369. https://doi.org/10.1016/j.exphem.2008.05.004
  18. Ortega, F. J., Moreno-Navarrete, J. M., Pardo, G., Sabater, M., Hummel, M., Ferrer, A., Rodriguez-Hermosa, J. I., Ruiz, B., Ricart, W., Peral, B. and Fernandez-Real, J. M. (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. Plos One 5, e9022. https://doi.org/10.1371/journal.pone.0009022
  19. Esau, C., Kang, X., Peralta, E., Hanson, E., Marcusson, E. G., Ravichandran, L. V., Sun, Y., Koo, S., Perera, R. J., Jain, R., Dean, N. M., Freier, S. M., Bennett, C. F., Lollo, B. and Griffey, R. (2004) MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279, 52361-52365. https://doi.org/10.1074/jbc.C400438200
  20. Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H. R., Kauppinen, S. and Plasterk, R. H. (2005) MicroRNA expression in zebrafish embryonic development. Science 309, 310-311. https://doi.org/10.1126/science.1114519
  21. Tuddenham, L., Wheeler, G., Ntounia-Fousara, S., Waters, J., Hajihosseini, M. K., Clark, I. and Dalmay, T. (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580, 4214-4217. https://doi.org/10.1016/j.febslet.2006.06.080
  22. Kobayashi, T., Lu, J., Cobb, B. S., Rodda, S. J., McMahon, A. P., Schipani, E., Merkenschlager, M. and Kronenberg, H. M. (2008) Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc. Natl. Acad. Sci. U.S.A. 105, 1949-1954. https://doi.org/10.1073/pnas.0707900105
  23. Lin, E. A., Kong, L., Bai, X. H., Luan, Y. and Liu, C. J. (2009) miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J. Biol. Chem. 284, 11326-11335. https://doi.org/10.1074/jbc.M807709200
  24. Hornstein, E., Mansfield, J. H., Yekta, S., Hu, J. K. H., Harfe, B. D., McManus, M. T., Baskerville, S., Bartel, D. P. and Tabin, C. J. (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438, 671-674. https://doi.org/10.1038/nature04138
  25. Nielsen, J. A., Lau, P., Maric, D., Barker, J. L. and Hudson, L. D. (2009) Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis. Bmc. Neurosci. 10, 10-98. https://doi.org/10.1186/1471-2202-10-10
  26. Pais, H., Nicolas, F. E., Soond, S. M., Swingler, T. E., Clark, I. M., Chantry, A., Moulton, V. and Dalmay, T. (2010) Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA 16, 489-494. https://doi.org/10.1261/rna.1701210
  27. Ikeda, T., Kawaguchi, H., Kamekura, S., Ogata, N., Mori, Y., Nakamura, K., Ikegawa, S. and Chung, U. I. (2005) Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J. Bone Miner. Metab. 23, 337-340. https://doi.org/10.1007/s00774-005-0610-y
  28. Smits, P., Li, P., Mandel, J., Zhang, Z., Deng, J. M., Behringer, R. R., de Crombrugghe, B. and Lefebvre, V. (2001) The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell 1, 277-290. https://doi.org/10.1016/S1534-5807(01)00003-X
  29. Ushita, M., Saito, T., Ikeda, T., Yano, F., Higashikawa, A., Ogata, N., Chung, U., Nakamura, K. and Kawaguchi, H. (2009) Transcriptional induction of SOX9 by NF-kappaB family member RelA in chondrogenic cells. Osteoarthritis Cartilage 17, 1065-1075. https://doi.org/10.1016/j.joca.2009.02.003
  30. Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V., Komm, B. S., Javed, A., van Wijnen, A. J., Stein, J. L., Stein, G. S. and Lian, J. B. (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280, 33132-33140. https://doi.org/10.1074/jbc.M500608200
  31. Fisher, M. C., Li, Y., Seghatoleslami, M. R., Dealy, C. N. and Kosher, R. A. (2006) Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation. Matrix Biol. 25, 27-39. https://doi.org/10.1016/j.matbio.2005.07.008
  32. Retting, K. N., Song, B., Yoon, B. S. and Lyons, K. M. (2009) BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136, 1093-1104. https://doi.org/10.1242/dev.029926
  33. Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., Lee, T. H., Miano, J. M., Ivey, K. N. and Srivastava, D. (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705-710.
  34. Akao, Y., Nakagawa, Y., Hirata, I., Iio, A., Itoh, T., Kojima, K., Nakashima, R., Kitade, Y. and Naoe, T. (2010) Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther. 17, 398-408. https://doi.org/10.1038/cgt.2009.88
  35. Xu, N., Papagiannakopoulos, T., Pan, G. J., Thomson, J. A. and Kosik, K. S. (2009) MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells. Cell 137, 647-658. https://doi.org/10.1016/j.cell.2009.02.038
  36. Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H. and Impey, S. (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 102, 16426-16431. https://doi.org/10.1073/pnas.0508448102
  37. Lee, J. W., Kim, Y. H., Kim, S. H., Han, S. H. and Hahn, S. B. (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med. J. 45 Suppl, 41-47. https://doi.org/10.3349/ymj.2004.45.Suppl.41
  38. Oh, C. D., Chang, S. H., Yoon, Y. M., Lee, S. J., Lee, Y. S., Kang, S. S. and Chun, J. S. (2000) Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem. 275, 5613-5619. https://doi.org/10.1074/jbc.275.8.5613
  39. Soleimani, M. and Nadri, S. (2009) A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 4, 102-106. https://doi.org/10.1038/nprot.2008.221

Cited by

  1. MicroRNA-145 Regulates Chondrogenic Differentiation of Mesenchymal Stem Cells by Targeting Sox9 vol.6, pp.7, 2011, https://doi.org/10.1371/journal.pone.0021679
  2. MicroRNA-99a regulates early chondrogenic differentiation of rat mesenchymal stem cells by targeting the BMPR2 gene vol.366, pp.1, 2016, https://doi.org/10.1007/s00441-016-2416-8
  3. MicroRNAs’ Involvement in Osteoarthritis and the Prospects for Treatments vol.2015, 2015, https://doi.org/10.1155/2015/236179
  4. MicroRNA-30a promotes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression vol.148, 2016, https://doi.org/10.1016/j.lfs.2016.02.031
  5. MicroRNAs regulate osteogenesis and chondrogenesis vol.418, pp.4, 2012, https://doi.org/10.1016/j.bbrc.2012.01.075
  6. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro vol.228, pp.6, 2013, https://doi.org/10.1002/jcp.24282
  7. MicroRNAs in Bone Balance and Osteoporosis vol.76, pp.5, 2015, https://doi.org/10.1002/ddr.21260
  8. MicroRNA-125b regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfβ in vitro vol.102, 2014, https://doi.org/10.1016/j.biochi.2014.02.005
  9. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering vol.2, pp.4, 2015, https://doi.org/10.1016/j.gendis.2015.09.003
  10. Review: The Role of MicroRNAs in Osteoarthritis and Chondrogenesis vol.65, pp.8, 2013, https://doi.org/10.1002/art.37990
  11. Experimental study on the facilitative effects of miR-125b on the differentiation of rat bone marrow mesenchymal stem cells into neuron-like cells vol.37, pp.8, 2013, https://doi.org/10.1002/cbin.10103
  12. MiR-194 Regulates Chondrogenic Differentiation of Human Adipose-Derived Stem Cells by Targeting Sox5 vol.7, pp.3, 2012, https://doi.org/10.1371/journal.pone.0031861
  13. Roles of microRNAs in prenatal chondrogenesis, postnatal chondrogenesis and cartilage-related diseases vol.17, pp.12, 2013, https://doi.org/10.1111/jcmm.12161
  14. Diet composition transiently modulates proliferative and potency features of human cord blood-derived mesenchymal stem cells vol.55, 2014, https://doi.org/10.1016/j.biocel.2014.09.017
  15. miR-134 inhibits chondrogenic differentiation of bone marrow mesenchymal stem cells by targetting SMAD6 vol.39, pp.1, 2018, https://doi.org/10.1042/BSR20180921