DOI QR코드

DOI QR Code

Molecular cloning, expression and characterization of a novel feruloyl esterase enzyme from the symbionts of termite (Coptotermes formosanus) gut

  • Chandrasekharaiah, Matam (Rumen Microbiology Laboratory, Animal Nutrition Division, National Institute of Animal Nutrition and Physiology) ;
  • Thulasi, Appoothy (Rumen Microbiology Laboratory, Animal Nutrition Division, National Institute of Animal Nutrition and Physiology) ;
  • Bagath, M. (Rumen Microbiology Laboratory, Animal Nutrition Division, National Institute of Animal Nutrition and Physiology) ;
  • Kumar, Duvvuri Prasanna (Rumen Microbiology Laboratory, Animal Nutrition Division, National Institute of Animal Nutrition and Physiology) ;
  • Santosh, Sunil Singh (Rumen Microbiology Laboratory, Animal Nutrition Division, National Institute of Animal Nutrition and Physiology) ;
  • Palanivel, Chenniappan (Rumen Microbiology Laboratory, Animal Nutrition Division, National Institute of Animal Nutrition and Physiology) ;
  • Jose, Vazhakkala Lyju (Rumen Microbiology Laboratory, Animal Nutrition Division, National Institute of Animal Nutrition and Physiology) ;
  • Sampath, K.T. (Rumen Microbiology Laboratory, Animal Nutrition Division, National Institute of Animal Nutrition and Physiology)
  • Received : 2010.08.23
  • Accepted : 2010.12.03
  • Published : 2011.01.31

Abstract

Termites play an important role in the degradation of dead plant materials and have acquired endogenous and symbiotic cellulose digestion capabilities. The feruloyl esterase enzyme (FAE) gene amplified from the metagenomic DNA of Coptotermes formosanus gut was cloned in the TA cloning vector and subcloned into a pET32a expression vector. The Ft3-7 gene has 84% sequence identity with Clostridium saccharolyticum and shows amino acid sequence identity with predicted xylanase/chitin deacetylase and endo-1,4-beta-xylanase. The sequence analysis reveals that probably Ft3-7 could be a new gene and that its molecular mass was 18.5 kDa. The activity of the recombinant enzyme (Ft3-7) produced in Escherichia coli (E.coli) was 21.4 U with substrate ethyl ferulate and its specific activity was 24.6 U/mg protein. The optimum pH and temperature for enzyme activity were 7.0 and $37^{\circ}C$, respectively. The substrate utilization preferences and sequence similarity of the Ft3-7 place it in the type-D sub-class of FAE.

Keywords

References

  1. Jeffries, T. W. (1990) Biodegradation of lignin carbohydrate complexes. Biodegradation 1, 163-176. https://doi.org/10.1007/BF00058834
  2. Sigoillot, C., Camarero, S., Vidal, T., Record, E., Asther, M., Perez-Boada, M. and Martinez, M. J. (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J. Biotechnol. 115, 333-343. https://doi.org/10.1016/j.jbiotec.2004.09.006
  3. Ou, S. and Kwok, K. C. (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 84, 1261-1269. https://doi.org/10.1002/jsfa.1873
  4. Nethaji, M. and Pattabhi, V. (1988) Structure of 3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid (ferulic acid). Acta Cryst. C44, 275-277.
  5. Mathew, S. and Abraham, T. E. (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and FAEs involved in its release and their applications. Crit. Rev. Biotechnol. 24, 59-83. https://doi.org/10.1080/07388550490491467
  6. Topakas, E., Stamatis, H., Biely, P. and Christakopoulos, P. (2004) Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotrichum thermophile. Appl. Microbiol. Biotechnol. 63, 686-690. https://doi.org/10.1007/s00253-003-1481-6
  7. Khamidullina, E. A., Gromova, A. S., Lutsky, V, I. and Owen, N. L. (2006) Natural products from medicinal plants: non-alkaloidal natural constituents of the Thalictrum species. Nat. Prod. Rep. 23, 117-129. https://doi.org/10.1039/b504014k
  8. Williamson, G., Kroon, P. A. and Faulds, C. B. (1998) Hairy plant polysaccharides: a close shave with microbial esterases. Microbiology 144, 2011-2023. https://doi.org/10.1099/00221287-144-8-2011
  9. Garcia-Conesa, M. T., Kroon, P. A., Ralph, J., Mellon, F. A., Colquhoun, I. J., Saulnier, L. and Thibault, J. F. (1999) A cinnamoyl esterase from Aspergillus niger can break plant cell wall cross-links without release of free diferulic acids. Eur. J. Biochem. 266, 644-652. https://doi.org/10.1046/j.1432-1327.1999.00910.x
  10. Crepin, V. F., Faulds, C. B. and Connerton, I. F. (2004) Functional classification of the microbial feruloyl esterases. Appl. Microbiol. Biotechnol. 63, 647-652. https://doi.org/10.1007/s00253-003-1476-3
  11. Fazary, A. E and Ju, Y. H. (2007) Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochim. Biophys. Sin. 39, 811-828. https://doi.org/10.1111/j.1745-7270.2007.00348.x
  12. Ohkuma, M. (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl. Microbiol. Biotechnol. 61, 1-9. https://doi.org/10.1007/s00253-002-1189-z
  13. Bignell, D. E. (2000) Introduction to symbiosis. in: Termites: Evolution, Sociality, Symbioses, Ecology, Abe, T., Bignell, D. E. and Higashi, M. (eds.), pp. 189-209, Kluwer Academic Publishers, Netherlands.
  14. Nakashima, K., Watanable, H., Saitoh, H., Tokuda, G. and Azuma, J. I. (2002) Dual cellulose-digesting system of the wood-feefing termite, Coptotermes formosanus. Cell Mol. Life Sci. 59, 1554-1560. https://doi.org/10.1007/s00018-002-8528-1
  15. Scharf, M. E., Wu-Scharf, D, Pittendrigh, B. R. and Bennett, G. W. (2003) Caste and development-associated gene expression in a lower termite. Genome Biol. 4, R62. https://doi.org/10.1186/gb-2003-4-10-r62
  16. Prates, J. A. M., Tarbouriech, N., Charnock, S. J., Fontes, C. M. G. A., Ferreira, L. M. A. and Davies, G. J. (2001) The structure of the feruloyl esterase module of xylanase 10b from clostridium thermocellum provides insights into substrate recognition. Structure 9, 1183-1190. https://doi.org/10.1016/S0969-2126(01)00684-0
  17. Faulds, C. B., Zanicelli, D., Crepin, V. F., Connerton, I. F., Juge, N., Bhat, M. K., and Waldron, K. W. (2003) Specificity of feruloyl esterases for waterextractable and water unextractable feruloylated polysaccharides: influence of xylanase. J. Cereal. Sci. 38, 281-288. https://doi.org/10.1016/S0733-5210(03)00029-8
  18. Bartolome, B., Faulds, C. B., Kroon, P. A., Waldron, K., Gilbert, H. J., Hazlewood, G. and Williamson, G. (1997) An Aspergillus niger esterase (ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp. cellulosa esterase (XylD) release a 5-5' ferulic dehydrodimer (diferulic acid) from barley and wheat cell walls. Appl. Environ. Microbiol. 63, 208-212.
  19. Tenkanen, M., Schuseil, J., Puls, J. and Poutanen, K. (1991) Production, purification and characterization of an esterase liberating phenolic acids from lignocellulose. J. Biotechnol. 18, 69-84. https://doi.org/10.1016/0168-1656(91)90236-O
  20. Crepin, V. F., Faulds, C. B. and Connerton, I. F. (2004) Identification of a type-D feruloyl esterase from Neurospora crassa. Appl. Microbiol. Biotechnol. 63, 567-570. https://doi.org/10.1007/s00253-003-1466-5
  21. Crepin, V. F., Faulds, C. B. and Connerton, I. F. (2003) Production and characterisation of the Talaromyces stipitatus feruloyl esterase FAEC in Pichia pastoris: identification of the nucleophilic serine. Protein. Expr. Purif. 29, 176-184. https://doi.org/10.1016/S1046-5928(03)00050-0
  22. Doyle, J. J. and Doyle, J. L. (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13-15.
  23. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of miclogram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  24. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680-685. https://doi.org/10.1038/227680a0
  25. Latha, G. M., Srinivas, P. and Muralikrishna, G. (2007) Purification and charectarization of ferulic acid esterase from Malted finger millet (Eleusine coracana, Indaf-15). J. Agri. Food Chem. 55, 9704-9712. https://doi.org/10.1021/jf071918d
  26. Hatamoto, O., Watarai, T., Kikuchi, M., Mizusawa, K. and Sekine, H. (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175, 215-221. https://doi.org/10.1016/0378-1119(96)00153-9

Cited by

  1. Metagenomic mining of feruloyl esterases from termite enteric flora vol.98, pp.2, 2014, https://doi.org/10.1007/s00253-013-4909-7
  2. Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development vol.36, pp.6, 2016, https://doi.org/10.3109/07388551.2015.1083939
  3. Termites as Targets and Models for Biotechnology vol.60, pp.1, 2015, https://doi.org/10.1146/annurev-ento-010814-020902
  4. Expression and biochemical characterization of two novel feruloyl esterases derived from fecal samples of Rusa unicolor and Equus burchelli vol.500, pp.1, 2012, https://doi.org/10.1016/j.gene.2012.03.027
  5. Accessing Carboxylesterase Diversity from Termite Hindgut Symbionts through Metagenomics vol.22, pp.5, 2012, https://doi.org/10.1159/000342447
  6. Deciphering the synergism of endogenous glycoside hydrolase families 1 and 9 from Coptotermes gestroi vol.43, pp.10, 2013, https://doi.org/10.1016/j.ibmb.2013.07.007
  7. Molecular Cloning, Overexpression and Characterization of a Novel Feruloyl Esterase from a Soil Metagenomic Library vol.20, pp.4, 2011, https://doi.org/10.1159/000329833
  8. A novel feruloyl esterase from a soil metagenomic library with tannase activity vol.95, 2013, https://doi.org/10.1016/j.molcatb.2013.05.026