DOI QR코드

DOI QR Code

Antioxidant Activity in Water and Methanol Extracts from Korean Edible Wild Plants

국내산 산채류의 물 및 메탄올 추출물에 대한 항산화 활성

  • Lee, Young-Min (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Bae, Ji-Hyun (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Jung, Ho-Young (Ellead Skin Research Center) ;
  • Kim, Jae-Hyun (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Park, Dong-Sik (Functional Food & Nutrition Division, Rural Development Administration)
  • 이영민 (농촌진흥청 기능성식품과) ;
  • 배지현 (농촌진흥청 기능성식품과) ;
  • 정호영 (엘리드 임상시험 연구소) ;
  • 김재현 (농촌진흥청 기능성식품과) ;
  • 박동식 (농촌진흥청 기능성식품과)
  • Received : 2010.10.08
  • Accepted : 2010.11.16
  • Published : 2011.01.31

Abstract

The present study was performed to investigate antioxidant activities of Korean edible wild extracts. In water and methanol extracts of edible wild plants, total polyphenol content of water and methanol extracts ranged 4.6~183.8 and 8.2~270.1 mg/g, respectively. Radical scavenging activity against DPPH and ABTS radicals was observed to be high in Lysimachia barystachys, Aceriphyllum rossii, Securinega suffruticosa, Sedum kamtschaticum, and Pedicularis resupinata. Pedicularis resupinata, Securinega suffruticosa, Patrinia villosa, and Solidago virga-aurea var. asiatica showed effective SOD-like activity. There was significant correlation between polyphenol content and DPPH and ABTS radical scavenging activities, and SOD-like activity. Plant extracts such as Pedicularis resupinata, Securinega suffruticosa, Rhapontica uniflora, Lysimachia barystachys, and Aceriphyllum rossii had higher polyphenol content, radical scavenging, and SOD-like activity. These results indicate that Korean edible wild plants may be useful as potential antioxidant sources for improving human antioxidant defense system.

연구에서는 산채류 34종의 물 추출물과 메탄올 추출물을 제조한 후 항산화 활성을 탐색하여 산채류 유래 항산화물질을 탐색하고 기능성식품을 개발하기 위한 항산화능 우수 산채류 선발의 기초 자료를 제공하고자 하였다. 산채류시료 34종을 물과 메탄올 추출하였을 때 추출 수율은 물 추출의 경우 4.6~34.6%이었고, 메탄올 추출의 경우 3.4~45.0%이었다. 총 폴리페놀 함량은 물 추출물에서 4.6~183.8mg/g이고, 메탄올 추출물에서 8.2~270.4 mg/g이었다. 물과 메탄올 추출물에서 돌단풍(Aceriphyllum rossii )이 각각 183.8, 270.1 mg/g의 가장 높은 폴리페놀 함량을 보였고, 공통적으로 광대싸리(Securinega suffruticosa), 기린초(Sedum kamtschaticum), 까치수영(Lysimachia barystachys), 송이풀(Pedicularis resupinata)이 높은 폴리페놀 함량을 보였다. DPPH와 ABTS 라디칼 소거능은 까지수영, 돌단풍, 광대싸리, 기린초, 송이풀(Pedicularis resupinata), 승마(Cimicifuga heracleifolia), 짚신나물(Agrimonia pilosa), 뻐꾹채(Rhapontica uniflora)에서 우수하였다. 변수간의 상관성을 분석했을 때, 폴리페놀 함량과 DPPH 및 ABTS 라디칼 소거능, SOD 유사활성 사이에는 유의적인 양의 상관관계가 있었으며, 이들 측정치에서 공통적으로 우수한 것으로 조사된 산채류는 송이풀, 광대싸리, 뻐꾹채, 까치수영, 돌단풍이었다.

Keywords

References

  1. Kirkinezos IG, Moraes CT. 2001. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 12: 449-457. https://doi.org/10.1006/scdb.2001.0282
  2. Chance B, Sies H, Boveris A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527-605. https://doi.org/10.1152/physrev.1979.59.3.527
  3. Limon-Pacheco J, Gonsebatt ME. 2009. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674: 137-147. https://doi.org/10.1016/j.mrgentox.2008.09.015
  4. Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC. 1999. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci 96: 4820-4825. https://doi.org/10.1073/pnas.96.9.4820
  5. Statistics Korea. 2009. Cause of Death Statistics 2008.
  6. Zhu X, Raina AK, Lee H, Casadesus G, Smith MA, Perry G. 2004. Oxidative stress signalling in Alzheimer’s disease. Brain Res 1000: 32-39. https://doi.org/10.1016/j.brainres.2004.01.012
  7. Ungvari Z, Sonntag WE, Csiszar A. 2010. Mitochondria and aging in the vascular system. J Mol Med 88: 1021-1027. https://doi.org/10.1007/s00109-010-0667-5
  8. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. 2010. Oxidative stress, inflamation, and cancer: How are they linked? Free Radic Biol Med 49: 1603-1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  9. Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C, Ghirlanda G. 2010. Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud 7: 15-25. https://doi.org/10.1900/RDS.2010.7.15
  10. Lakshmi SV, Padmaja G, Kuppusamy P, Kutala VK. 2009. Oxidative stress in cardiovascular disease. Indian J Biochem Biophys 46: 421-440.
  11. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. 2003. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 16: 1140-1142.
  12. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. 1999. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 22: 774-779.
  13. Lachance PA, Nakat Z, Jeong W. 2001. Antioxidants: an integrative approach. Nutrition 17: 835-838. https://doi.org/10.1016/S0899-9007(01)00636-0
  14. Halliwell B. 1996. Antioxidants in human health and disease. Annu Rev Nutr 16: 33-50. https://doi.org/10.1146/annurev.nu.16.070196.000341
  15. Temple NJ. Antioxidants and disease: more questions than answers. Nutr Res 20: 449-459. https://doi.org/10.1016/S0271-5317(00)00138-X
  16. Liu RH. 2003. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78: 517S-520S. https://doi.org/10.1093/ajcn/78.3.517S
  17. Yoon JH, Kim KH. 2007. Biological functions of wild edible greens. Annals of Plant Resources Research 6: 219-243.
  18. Shahidi F, Naczk M. 1995. Food phenolics: an overview. In Food Phenolics: Sources, Chemistry, Effects, Applications. Technomic Publishing Company Inc, Lancaster, PA, USA. p 1-5.
  19. Folin O, Denis W. 1912. On phosphotungastic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249.
  20. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Naure 181: 1198-1200.
  21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  22. Marklund S, Marklund G. 1975. Involvement of superoxide amino radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 468-474.
  23. Han DS, Kim SJ. 1994. SOD-like compounds and development of functional food. Bulletin of Food Technology 7: 41-49.
  24. Graf BA, Milbury PE, Blumberg JB. 2005. Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8: 281-290. https://doi.org/10.1089/jmf.2005.8.281
  25. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. J Food Sci Technol 37: 233-240.
  26. Lee JS, Kim HW, Kim OD, Yoon YK, Jang KH, Lee DJ. 2009. Evaluation of biological activities of different plant parts in Lysimachia barystachys Bunge. J Intl Agri 21: 132-135.
  27. Kim JH, Ahn YJ, Park SN. 2009. Antioxidative activity of Securinega suffruticosa extract. J Korean Oil Chemists' Soc 26: 269-278.
  28. Bang JE, Choi HY, Kim SI. 2009. Anti-oxidative activity and chemical composition of various Heracleum moellendorffii Hance extracts. Korean J Food Preserv 16: 765-771.
  29. Park YS. 2002. Antioxidative activities and contents of polyphenolic compound of medicinal herb extracts. J East Asian Soc Dietary Life 12: 23-31.
  30. Kim SM, Jung YJ, Pan CH, Um BH. 2010. Antioxidant activity of methanol extracts from the genus Lespedeza. J Korean Soc Food Sci Nutr 39: 769-775. https://doi.org/10.3746/jkfn.2010.39.5.769
  31. Choi SY, Lim SH, Kim JS, Ha TY, Kim SR, Kang KS, Hwang IK. 2005. Evaluation of the estrogenic and antioxidant activity of some edible and medicinal plants. Korean J Food Sci Technol 37: 549-556.
  32. Ku KM, Kim SK, Kang YH. 2009. Antioxidant activity and functional components of corn silk (Zea mays L.). Korean J Plant Res 22: 323-329.
  33. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. 2004. Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol 36: 333-338.
  34. Han JT, Bang MH, Chun OK, Kim DO, Lee CY, Baek NI. 2004. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Arch Pharm Res 27: 390-395. https://doi.org/10.1007/BF02980079
  35. Ahn EM, Han JT, Kwon BM, Kim SH, Baek NI. 2008. Anti-cancer activity of flavonoids from Aceriphyllum rossii. J Korean Soc Appl Biol Chem 51: 309-315. https://doi.org/10.3839/jksabc.2008.054

Cited by

  1. Protective Effects of Sea Buckthorn (Hippophae rhamnoides L.) Leaves Fermented with Hericium erinaceum Mycelium against Oxidative Modification of Biological Macromolecules and Cell Death vol.44, pp.1, 2015, https://doi.org/10.3746/jkfn.2015.44.1.035
  2. Antioxidative and antimicrobial activities of Oenothera biennisextracted by different methods vol.23, pp.2, 2016, https://doi.org/10.11002/kjfp.2016.23.2.233
  3. Physicochemical Composition and Antioxidative Activities of Rhynchosia nulubilis according to Roasting Temperature vol.43, pp.5, 2014, https://doi.org/10.3746/jkfn.2014.43.5.675
  4. Antioxidant Effects of Sanchae-namul in Mice Fed High-Fat and High-Sucrose Diet vol.30, pp.4, 2014, https://doi.org/10.9724/kfcs.2014.30.4.369
  5. Quality characteristics and preparation of Dasik using roasted mung bean vol.23, pp.2, 2014, https://doi.org/10.5934/kjhe.2014.23.2.357
  6. Antioxidant Activity and Inhibitory Effect against Oxidative Neuronal Cell Death of Kimchi Containing a Mixture of Wild Vegetables with Nitrite Scavenging Activity vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1458
  7. Antioxidative Activities and Quality Characteristics of the Aster scaber Bibimbap for Home Meal Replacement with Varied Blanching Pre-treatment vol.29, pp.5, 2014, https://doi.org/10.7318/KJFC/2014.29.5.444
  8. Antioxidant activities of hot-water extracts from Aster scaber by cultivation and drying methods vol.21, pp.1, 2014, https://doi.org/10.11002/kjfp.2014.21.1.82
  9. Antioxidant and Antitumor Activities of Methanolic Extracts from Humulus japonicus vol.25, pp.2, 2012, https://doi.org/10.9799/ksfan.2012.25.2.357
  10. Effect of Addition of Blackcurrant Powder on Quality and Antioxidant Activity of Yanggaeng vol.31, pp.5, 2016, https://doi.org/10.7318/KJFC/2016.31.5.457
  11. Antioxidant activities of ethanol extracts of Aster scaber grown in wild and culture field vol.22, pp.4, 2015, https://doi.org/10.11002/kjfp.2015.22.4.567
  12. Physicochemical Changes in Hemerocallis coreana Nakai After Blanching, Drying, and Fermentation vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1638
  13. Comparison of Antioxidant and Nitrite Scavenging Activities of Different Colored Kiwis Cultivated in Korea vol.30, pp.2, 2015, https://doi.org/10.7318/KJFC/2015.30.2.220
  14. Antioxidant Activities of Cedrela sinensis Hydrolysates Prepared Using Various Enzymes vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.413
  15. Chemical properties and antioxidant activities of the sprouts of Kalopanax pictus, Cedrela sinensis, Acanthopanax cortex at different plucking times vol.20, pp.3, 2013, https://doi.org/10.11002/kjfp.2013.20.3.356
  16. Preparation and Quality Characteristics of Namul-kim bugak Using Aster yomena vol.32, pp.1, 2016, https://doi.org/10.9724/kfcs.2016.32.1.50
  17. Antioxidant Activities of Solvent Extracts from Pomegranate Endocarp vol.40, pp.12, 2011, https://doi.org/10.3746/jkfn.2011.40.12.1635
  18. Physicochemical Composition of Ramie Leaf According to Drying Methods vol.43, pp.1, 2014, https://doi.org/10.3746/jkfn.2014.43.1.118
  19. Study on the Antioxidant Effect and Total Phenolics Content in Rosaceae Plant Stem vol.23, pp.12, 2014, https://doi.org/10.5322/JESI.2014.23.12.2129
  20. Changes in the Physiological Activities of Four Sweet Potato Varieties by Cooking Condition vol.45, pp.1, 2012, https://doi.org/10.4163/kjn.2012.45.1.12
  21. Comparison of Antioxidant and Antimicrobial Activities in Siraegi (Dried Radish Greens) according to Cooking Process vol.27, pp.4, 2014, https://doi.org/10.9799/ksfan.2014.27.4.609
  22. Changes in Phenolic Composition, Antioxidant and Antidiabetic Properties of Jeju Citrus sudachi as Influenced by Maturity vol.25, pp.11, 2015, https://doi.org/10.5352/JLS.2015.25.11.1311
  23. Effects of Water Extracts of Red Pepper Seeds Powder on Antioxidative Enzyme Activities and Oxidative Damage in Rats Fed High-Fat and High-Cholesterol Diets vol.44, pp.4, 2011, https://doi.org/10.4163/kjn.2011.44.4.284
  24. Comparison of Antioxidant and Antimicrobial Activities of Bracken (Pteridium aquilinum Kuhn) according to Cooking Methods vol.27, pp.3, 2014, https://doi.org/10.9799/ksfan.2014.27.3.348
  25. 아마란스 종자 추출물의 라디칼 저해활성 vol.18, pp.2, 2014, https://doi.org/10.13050/foodengprog.2014.18.2.116
  26. Antioxidant Activities of Amaranth (Amaranthus spp. L.) Flower Extracts vol.27, pp.2, 2014, https://doi.org/10.9799/ksfan.2014.27.2.175
  27. Antioxidant and Physicochemical Changes in Salvia plebeia R. Br. after Hot-air Drying and Blanching vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.893
  28. Effects of Ramie Leaf according to Drying Methods on Antioxidant Activity and Growth Inhibitory Effects of Cancer Cells vol.43, pp.5, 2014, https://doi.org/10.3746/jkfn.2014.43.5.682
  29. Antioxidant Activity of 11 Species in Korean Native Forest Plants vol.28, pp.6, 2015, https://doi.org/10.9799/ksfan.2015.28.6.1098
  30. Hepatoprotective Effect of Curdrania tricuspidata Extracts against Oxidative Damage vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.007
  31. Evaluation of the Antioxidant Activity and Anti-Inflammatory Effect of Hericium erinaceus Water Extracts vol.21, pp.2, 2013, https://doi.org/10.7783/KJMCS.2013.21.2.112
  32. Anti-oxidative and anti-proliferative activities of acetone extract of the cortex ofUlmus pumilaL. vol.59, pp.2, 2016, https://doi.org/10.3839/jabc.2016.024
  33. Antioxidative Activity of the n-Hexane Fractions from Spatholobus suberectus (SS), Scutellsria barbata (SB), Psoralea corylifolia (PC), Curcuma zedoaria (CZ), Schisandra chinensis (SC), and Corydalis turtschaninovii (CT) vol.44, pp.4, 2012, https://doi.org/10.9721/KJFST.2012.44.4.493
  34. Vitamin C and antioxidant capacity stability in cherry and romaine during storage at different temperatures vol.49, pp.1, 2016, https://doi.org/10.4163/jnh.2016.49.1.51
  35. oliver leaves vol.61, pp.2, 2018, https://doi.org/10.3839/jabc.2018.017
  36. 인진쑥 노루궁뎅이 버섯균사체 발효물의 항산화 활성 vol.31, pp.4, 2014, https://doi.org/10.12925/jkocs.2014.31.4.719
  37. 재배방법을 달리한 복령 에탄올추출물의 항산화 효과 vol.31, pp.5, 2016, https://doi.org/10.6116/kjh.2016.31.5.107.
  38. 태안에서 서식하는 사구식물 4종의 폴리페놀, 플라보노이드 함량과 항산화 활성 비교 vol.30, pp.1, 2017, https://doi.org/10.7732/kjpr.2016.30.1.008
  39. 참취 데치기 최적 공정 확립과 추출물의 항산화 특성 변화 vol.34, pp.1, 2011, https://doi.org/10.12925/jkocs.2017.34.1.173
  40. 참죽의 추출방법에 따른 폴리페놀 분획의 생리기능성 vol.49, pp.4, 2011, https://doi.org/10.9721/kjfst.2017.49.4.438
  41. Effect of collection time on the chemical composition and levels of thiobarbituric acid reactive substance of Godulbaegi (Youngia sonchifolia M.) vol.24, pp.6, 2017, https://doi.org/10.11002/kjfp.2017.24.6.786
  42. 블랙커런트 요구르트 첨가 드레싱의 품질특성 및 항산화성 vol.25, pp.1, 2011, https://doi.org/10.11002/kjfp.2018.25.1.71
  43. 엄나무 발효물의 항산화 및 항아밀로이드 활성 vol.35, pp.2, 2011, https://doi.org/10.12925/jkocs.2018.35.2.389
  44. 산채(산나물)에 대한 소비자 의향 및 수요 분석: 소비자 의향 조사와 소셜 빅데이터 분석을 통하여 vol.108, pp.1, 2011, https://doi.org/10.14578/jkfs.2019.108.1.116
  45. 크롬염으로 손상된 배양 NIH3T3 섬유모세포에 대한 짚신나물 추출물의 보호 효과 vol.51, pp.2, 2019, https://doi.org/10.15324/kjcls.2019.51.2.205
  46. Napier grass (Penninsetum purpureum) 에탄올 추출물의 in vitro 항산화 효과 vol.62, pp.2, 2011, https://doi.org/10.3839/jabc.2019.023
  47. 한입버섯의 추출 용매별 항산화 및 항염증 활성 vol.17, pp.3, 2019, https://doi.org/10.14480/jm.2019.17.3.136
  48. 홍차박 추출물의 in vitro 항산화 활성 vol.62, pp.3, 2019, https://doi.org/10.3839/jabc.2019.038
  49. 쌍별귀뚜라미 단백가수분해물의 제조 및 항산화 활성 vol.51, pp.5, 2019, https://doi.org/10.9721/kjfst.2019.51.5.473
  50. 강원도 10종 산채류의 항산화 및 인지능력개선 효능 평가 vol.32, pp.6, 2011, https://doi.org/10.9799/ksfan.2019.32.6.668
  51. Optimization of Roasting Condition to Improve Quality of Freeze-Dried Silkworms Using RSM vol.18, pp.1, 2011, https://doi.org/10.20402/ajbc.2020.0006
  52. 두충나무(Eucommia ulmoides Oliver) 잎과 껍질의 에탄올 추출물의 항산화 활성 vol.63, pp.3, 2020, https://doi.org/10.3839/jabc.2020.035
  53. Samnamul (Shoots of Aruncus dioicus) Inhibit Adipogenesis by Downregulating Adipocyte-Specific Transcription Factors in 3T3-L1 Adipocytes vol.8, pp.12, 2011, https://doi.org/10.3390/pr8121576
  54. 와송 에틸아세테이트 분획물의 항산화 효능에 관한 연구 vol.38, pp.1, 2011, https://doi.org/10.12925/jkocs.2021.38.1.118
  55. 추출 용매를 달리한 생강 추출물에 대한 생리활성의 비교 평가 연구 vol.36, pp.2, 2021, https://doi.org/10.6116/kjh.2021.36.2.19.
  56. Anti-inflammatory and anti-Helicobacter effects of the Aralia elata hot-water extract vol.28, pp.2, 2021, https://doi.org/10.11002/kjfp.2021.28.2.279
  57. Inhibition of nitric oxide and lipid accumulation by Sargassum sp. seaweeds and their antioxidant properties vol.28, pp.2, 2021, https://doi.org/10.11002/kjfp.2021.28.2.288
  58. The Protective Effect of Adenocaulon himalaicum Edgew. and Its Bioactive Compound Neochlorogenic Acid against UVB-Induced Skin Damage in Human Dermal Fibroblasts and Epidermal Keratinocytes vol.10, pp.8, 2011, https://doi.org/10.3390/plants10081669