DOI QR코드

DOI QR Code

Antimutagenicity of Korean Sweet Potato (Ipomoea batatas L.) Cultivars

한국산 고구마의 품종별 항돌연변이 효과

  • Park, Jeong-Seob (Dept. of Bioprocess Engineering, Graduate School, Chonbuk National University) ;
  • Bae, Jae-O (Dept. of Food Science & Technology, Graduate School, Chonbuk National University) ;
  • Choi, Gyu-Hwan (Jeollabuk-Do Agricultural Research and Extension Service) ;
  • Chung, Bong-Woo (Dept. of Bioprocess Engineering, Graduate School, Chonbuk National University) ;
  • Choi, Dong-Seong (Dept. of Food and Biotechnology, Woosuk University)
  • 박정섭 (전북대학교 대학원 생물공정공학과) ;
  • 배재오 (전북대학교 대학원 식품공학과) ;
  • 최규환 (전라북도 농업기술원) ;
  • 정봉우 (전북대학교 대학원 생물공정공학과) ;
  • 최동성 (우석대학교 식품생명공학과)
  • Received : 2010.10.11
  • Accepted : 2010.11.26
  • Published : 2011.01.31

Abstract

Polyphenolic content and antimutagenicity of the methanol extracts prepared from 22 cultivars of sweet potato with different flesh colors were investigated using Folin-Ciocalteu's phenol reagent method and Ames test, respectively. There was a remarkable cultivar difference in the polyphenolic content of sweet potato. Su, Hayanmi and Shinhwangmi among 17 cultivars of non-purple sweet potato had higher polyphenolic contents of 21.4, 21.5 and $20.3{\mu}g$ (GAE/g dried sweet potato), respectively, whereas Manami and Yeonhwangmi were very much lower at 4.6 and $4.8{\mu}g$. Mokpo No.62, Borami, Sinjami, Jami and Ayamurasaki had much higher polyphenolic contents of 67.7, 76.9, 44.9, 128.3 and $93.2{\mu}g$, respectively, than non-purple sweet potato. The methanol extract from the sweet potato effectively inhibited the reverse mutation induced by 1-NP, daunomycin, Trp-P-1, Trp-P-2 and 2-AA on S. Typhimurium TA 98, and by 1-NP on S. Typhimurium TA 100. These results suggest that the antimutagencity properties may be influenced by the tested mutagen and strain rather than the polyphenolic content of non-purple and purple sweet potato. However, in the purple sweet potatoes, a high polyphenolic content may influence the antimutagencity properties.

22종의 고구마에 대한 총 페놀함량 및 항돌연변이원성을 평가하였다. 17종의 비자색고구마 중 수, 하얀미, 신황미 품종의 총 페놀함량이 21.4, 21.5, $20.3{\mu}g$(GEA/g dried sweet potato)으로 가장 높았으며, 맛나미와 연황미 품종에서 4.6과 $4.8{\mu}g$으로 가장 낮았다. 5종의 자색고구마에서 총 페놀함량은 자미 품종이 $128.3{\mu}g$으로 가장 높았으나, 신자미 품종에서 $44.9{\mu}g$으로 가장 낮았다. 1-NP, daunomycin, Trp-P-1, Trp-P-2, 2-AA에 의해 돌연변이가 유도된 S. Typhimurium TA 98과 1-NP에 의해 돌연변이가 유도된 S. Typhimurium TA 100에 있어서 돌연변이 억제효과는 고구마 메탄올 추출물은 대체적으로 효과적이었으며, 자색고구마에 있어서는 자미와 아야무라사키 품종에서 높았다. 총 페놀함량이 많은 자색고구마는 2-AA에 대해서만 높은 돌연변이 억제효과를 나타내었을 뿐 1-NP, daunomycin, Trp-P-1, Trp-P-2에 대해서는 비자색고구마와 뚜렷한 차이를 보이지 않았다. 자색고구마 품종 간에 있어서는 총 페놀함량이 많을수록 돌연변이 억제효과가 높았다. 고구마의 품종별 항돌연변이 효과는 총 페놀 함량보다는 사용된 돌연변이원 및 균주에 따라 좌우되는 경향이었다.

Keywords

References

  1. Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R. 2009. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 33: 1503-1508. https://doi.org/10.1016/j.biombioe.2009.07.014
  2. Park JS, Chung BW, Bae CJ, Lee JH, Jung MY, Choi DS. 2010. Effects of sweet potato cultivars and koji types on general properties and volatile flavor compounds in sweet potato soju. Korean J Food Sci Technol 42: 468-474.
  3. Kim SJ, Rhim JW, Jung ST, Ahn YS, Oh YB. 1997. Carotenoid contents of yellow sweet potatoes. Korean J Food Sci Technol 29: 218-222.
  4. Jackman RL, Yada RY, Jung MA. 1987. Separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis. J Food Biochem 11: 279-308. https://doi.org/10.1111/j.1745-4514.1987.tb00128.x
  5. Kim SY, Ryu CH. 1995. Studies on the nutritional components of purple sweet potato (Ipomoea batatas). Korean J Food Sci Technol 27: 819-825.
  6. Micheline MM. 1991. Recent progress in the medical applications of carotenoids. Pure Appl Chem 63: 147-156. https://doi.org/10.1351/pac199163010147
  7. Peto R, Coll R, Buckey JD, Sporn MB. 1984. Can dietary beta-carotene materially reduce human cancer rates? Nature 290: 201-208.
  8. Almeida LB, Penteado MVC. 1988. Carotenoids and pro-vitamin A value of white fleshed Brazilian sweet potatoes (Ipomoea batatas Lam.). J Food Comps Anal 4: 341-352.
  9. Kakegawa K, Hattori E, Koike K. 1991. Introduction of anthocyanin synthesis and related enzyme activities in cell cultures of Centaurea cyanus by UV-light irradiation. Photochem 20: 2271-2273.
  10. Lee JS, Ahn YS, Chung MN, Kim HS. 2007. Biological activity of varieties, isolation and purification of antioxidants components in sweet potato. Korean J Breed Sci 39: 296-301.
  11. Lee HH, Kang SG, Rhim JW. 1999. Characteristics of antioxidative and antimicrobial activities of various cultivars of sweet potato. Korean J Food Sci Technol 31: 1090-1095.
  12. Cho YJ, Kim HA, Bang MA, Oh YB, Jeong BC, Moon YH, Jeong WJ. 2003. Protective effect of purple sweet potato (Ipomoea batatas) on hepatotoxicity rats induced by carbon tetrachlolide. Korean J Food Culture 18: 202-210.
  13. Truong VD, Deighton N, Thompson RT, Mcfeeters RF, Dean LO, Pecota KV, Yencho GC. 2010. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS. J Agric Food Chem 58: 404-410. https://doi.org/10.1021/jf902799a
  14. Oki T, Masuda M, Furuta S, Nishiba Y, Terahara N, Suda I. 2002. Involvement of anthocyanins and other phenolic compounds in radical scavenging activity of purple-fleshed sweet potato cultivars. J Food Sci 67: 1752-1756. https://doi.org/10.1111/j.1365-2621.2002.tb08718.x
  15. Walter WM, Purcell AE, McCollum GK. 1979. Use of highpressure liquid chromatography for analysis of sweet potato phenolics. J Agric Food Chem 27: 942-946. https://doi.org/10.1021/jf60225a030
  16. Mary CC, Monika A, Paul CH. 1989. Mutagenicity of the phenolic microsomal metabolites of 3-nitrofluoranthene and 1-nitropyrene in strains of Salmonella typhimurium. Mutat Res 210: 263-269. https://doi.org/10.1016/0027-5107(89)90087-0
  17. Carriere V, Waziers I, Courtois YA, Leroux JP, Beaune PH. 1992. Cytochrome P450 induction and mutagenicity of 2-aminoanthracene (2-AA) in rat liver and gut. Mutat Res 268: 11-20. https://doi.org/10.1016/0027-5107(92)90077-F
  18. Cartwright RA. 1983. Historical and modern epidemiological studies on populations exposed to N-substituted aryl compounds. Environ Health Perspect 49: 13-19. https://doi.org/10.2307/3429575
  19. Dimarco A, Gaetani M, Dorigotti L, Soldati M, Bellini O. 1963. Daunomycin: A new antibiotic with antitumor activity. Cancer Chemother Rep 38: 31-38.
  20. Benedict WF, Baker MS, Haroun L, Choi E, Ames BN. 1977. Mutagenicity of cancer chemotherapeutic agents in the Salmonella/microsome test. Cancer Res 37: 2209-2213.
  21. Yamaizumi Z, Shimoi T, Kasai H, Nishimura S, Takahashi Y, Nagao M, Sugimura T. 1980. Detection of potent mutagens, Trp-P-1 and Trp-P-2, in broiled fish. Cancer Lett 9: 75-83. https://doi.org/10.1016/0304-3835(80)90110-X
  22. Nagao M, Honda M, Seino Y, Yahagi T, Sugimura T. 1997. Mutagenicities of smoke condensates and the charred surface of fish and meat. Cancer Lett 2: 221-226.
  23. Ferguson LR, Philpott M, Karunasinghe N. 2004. Dietary cancer and prevention using antimutagens. Toxicology 198: 147-159. https://doi.org/10.1016/j.tox.2004.01.035
  24. Yoshimoto M, Okuno S, Yoshinaga M, Yamakawa O, Yamaguchi M, Yamada J. 1999. Antimutagenicity of sweet potato (Ipomoea batatas) roots. Biosci Biotechnol Biochem 63: 537-541. https://doi.org/10.1271/bbb.63.537
  25. Yoshimoto M, Okuno S, Yoshinaga M, Yamakawa O. 1999. Antimutagenicity of deacylated anthocyanins in purplefleshed sweet potato. Biosci Biotechnol Biochem 65: 1652-1655.
  26. Lee JS, Shin MJ, Park YK, Ahn YS, Chung MN, Kim HS, Kim JM. 2007. Antibacterial and antimutagenic effects of sweet potato tips extract. Korean J Crop Sci 52: 303-310.
  27. Ames BN, Maron DM. 1983. Revised methods for the S. typhimurium mutagenicity test. Mutat Res 113: 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  28. Slinkard K, Singleton VL. 1977. Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28: 49-55.
  29. Ong TM, Mukhtar M, Wolf CR, Zeiger E. 1980. Differential effects of cytochrome P450-inducers on promutagen activation capabilities and enzymatic activities of S-9 from rat liver. J Environ Pathol Toxicol 4: 55-60.
  30. Cho JS, Kang JS, Long PH, Jing J, Back Y, Chung KS. 2003. Antioxidant and memory enhancing effects of purple sweet potato anthocyanin and cordyceps mushroom extract. Arch Pharm Res 26: 821-825. https://doi.org/10.1007/BF02980027
  31. Song J, Chung MN, Kim JT, Chi HY, Son JR. 2005. Quality characteristics and antioxidative activities in various cultivars of sweet potato. Korean J Crop Sci 50: 141-146.

Cited by

  1. Changes in the Physiological Activities of Four Sweet Potato Varieties by Cooking Condition vol.45, pp.1, 2012, https://doi.org/10.4163/kjn.2012.45.1.12
  2. Chemical Compositions and Antioxidative Activities of Sweet Potato Foliages Harvested by the Cultivation Period and Tips Location vol.27, pp.5, 2014, https://doi.org/10.9799/ksfan.2014.27.5.897
  3. Antioxidant Activity and Protective Effects of Anthocyanins-Rich Fraction from Korean Purple Sweet Potato Variety, "Shinjami" against Oxidative Stress in HepG2 Cell vol.27, pp.6, 2014, https://doi.org/10.9799/ksfan.2014.27.6.1090
  4. Antioxidant Activities of Extracts Prepared from Sweet Potatoes with Different Flesh Colors vol.58, pp.1, 2015, https://doi.org/10.3839/jabc.2015.005
  5. Vitamin C Quantification of Korean Sweet Potatoes by Cultivar and Cooking Method vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.955
  6. Preperation of Sweet Potato Doenjang using Colored Sweet Potato vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.529
  7. Changes in Quality Characteristics and Chemical Components of Sweet Potatoes Cultivated using Different Methods vol.45, pp.3, 2013, https://doi.org/10.9721/KJFST.2013.45.3.305
  8. Food Composition of Raw, Boiled, and Roasted Sweet Potatoes vol.28, pp.1, 2017, https://doi.org/10.7856/kjcls.2017.28.1.59
  9. Quality Characteristics of Sponge Cake Added with Purple Sweet Potato Depending on Various Shelf-Life vol.27, pp.4, 2014, https://doi.org/10.9799/ksfan.2014.27.4.558
  10. Substitution Effect of Enzymatically Hydrolyzed Purple Sweet Potato Powder on Skim Milk in Yogurt Preparation vol.58, pp.4, 2015, https://doi.org/10.3839/jabc.2015.049
  11. Quality Characteristics and Antioxidant Activities of Cookies added with Purple Sweet Potato Powder vol.29, pp.3, 2013, https://doi.org/10.9724/kfcs.2013.29.3.275
  12. Quality Characteristics of Sweet Potato Varieties Baked and Freeze Thawed vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.403
  13. Effects of Beetroot (Beta vulgaris) Powder on Quality Characteristics and Retarding Retrogradation by Shelf-life of Sponge Cake vol.32, pp.6, 2016, https://doi.org/10.9724/kfcs.2016.32.6.696
  14. 홍국(Monascus nuruk) 분말을 첨가한 스폰지 케이크의 품질 특성 및 노화 억제 분석 vol.22, pp.3, 2016, https://doi.org/10.20878/cshr.2016.22.3.002
  15. 고구마를 첨가한 저맥아 맥주의 양조와 품질 특성 vol.30, pp.3, 2011, https://doi.org/10.9799/ksfan.2017.30.3.491
  16. Phenolic Composition and Antioxidant Activity of Purple Sweet Potato (Ipomoea batatas (L.) Lam.): Varietal Comparisons and Physical Distribution vol.10, pp.3, 2011, https://doi.org/10.3390/antiox10030462