DOI QR코드

DOI QR Code

Characterization of Anti-Complementary Polysaccharides Isolated from Fruit Wine Using Korean Pears

배를 이용한 과실주로부터 분리한 항보체 활성화 다당의 특성

  • Choi, Jung-Ho (Dept. of Food Science & Biotechnology, Kyonggi University) ;
  • Shin, Kwang-Soon (Dept. of Food Science & Biotechnology, Kyonggi University)
  • 최정호 (경기대학교 식품생물공학과) ;
  • 신광순 (경기대학교 식품생물공학과)
  • Received : 2010.12.08
  • Accepted : 2010.12.13
  • Published : 2011.01.31

Abstract

To characterize the polysaccharides which exist as soluble forms in Korean traditional alcoholic beverages, the polysaccharides were isolated from Korean pear wine and their anti-complementary activities were examined. The main polysaccharide, PW-1 was purified to homogeneity from the crude polysaccharide (PW-0) in pear wine by size exclusion chromatography using Sephadex G-75. Molecular mass of PW-1 was estimated to be 150 kDa and it contained significant proportion of mannose (81.8%) and 5 different minor component sugars such as arabinose (1.2%), galactose (2.7%), glucose (8.5%), galacturonic acid (5.3%) and glucuronic acid (0.5%). These analyses indicated that the main polysaccharide in pear wine was mainly present as a mannan which had originated from the cell walls of fermenting yeasts. On the other hand, PW-1 showed potent anti-complementary activity in a dose-dependent fashion. Identification of C3 activation products by the crossed immunoelectrophoresis using anti-human C3 and anti-complementary activity of PW-1 in $Ca^{++}$-free condition suggested complement activations by PW-1 from Korean pear wine occur via both classical and alternative pathways.

한국 전통발효주 중에 존재하는 특이다당류의 화학적 특성 및 생물활성을 규명할 목적으로, 농가에서 직접 발효한 배주로부터 다당류를 분리하고 이들의 항보체 활성에 대해 검토하였다. 배주에 80% ethanol 침전을 행하여 얻어진 조다당 획분 PW-0을 이용, Sephadex G-75를 이용한 겔 여과 chromatography를 행하여 배주의 주요 다당인 PW-1을 정제할 수 있었다. PW-1 획분은 HPLC상에서 대칭을 유지하는 단일 peak로 검출되었으며, 분자량은 약 150 kDa으로 평가되었다. 정제다당인 PW-1의 구성당 조성을 확인한 주구성당으로 mannose(81.8%)가 높은 비율로 검출되었으며 그 외 arabinose(1.2%), galactose(2.7%), glucose(8.5%), galacturonic acid(5.3%) 및 glucuronic acid(0.5%) 등 5종의 당류가 소량 함유되어 있었다. 이 결과는 배주에 존재하는 주다당이 발효 효모의 세포벽에서 기원한 mannan임을 추정하게 하였다. 한편 고분자 정제 다당인 PW-1은 비특이적 면역계에 있어 중요 역할을 담당하고 있는 보체계에 대하여 농도 의존적인 활성화 경향을 보였다. 이들은 $Ca^{++}$ 이온이 제거된 상태에서의 항보체 활성과 anti-human C3를 이용한 2차원 면역전기영동에 의하여 C3 산물을 동정한 결과로부터 보체계의 고전경로와 부경로 등 양 경로를 모두 경유하여 활성을 나타냄을 확인할 수 있었다.

Keywords

References

  1. Wollin SD, Jones PJH. 2001. Alcohol, red wine and cardiovascular disease. J Nutr 131: 1401-1404. https://doi.org/10.1093/jn/131.5.1401
  2. Estruch R. 2000. Wine and cardiovascular disease. Food Res Int 33: 219-226. https://doi.org/10.1016/S0963-9969(00)00037-5
  3. Kerry NL, Abbey M. 1997. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis 135: 93-102. https://doi.org/10.1016/S0021-9150(97)00156-1
  4. Tedesco I, Russo M, Russo P, Iacomino G, Russo GL, Carraturo A, Faruolo C, Moio L, Palumbo R. 2000. Antioxidant effect of red wine polyphenols on red blood cells. J Nutr Biochem 11: 114-119. https://doi.org/10.1016/S0955-2863(99)00080-7
  5. Whitehead TP, Robinson D, Allaway S, Syms J, Hale A. 1995. Effect of red wine ingestion on the antioxidant capacity of serum. Clin Chem 41: 32-35.
  6. Fuhrman B, Lavy A, Aviram M. 1995. Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am J Clin Nutr 61: 549-554. https://doi.org/10.1093/ajcn/61.3.549
  7. Choi HJ, Park JH, Han HS, Son JH, Son GM, Bae JH, Choi C. 2004. Effect of polyphenol compound from Korean pear (Pyrus pyrifolia Nakai) on lipid metabolism. J Korean Soc Food Sci Nutr 33: 299-304. https://doi.org/10.3746/jkfn.2004.33.2.299
  8. Cho HM. 2000. The perspectives of pear industry for 21C in Korea. Korean J Hort Sci Technol 18: 444-452.
  9. Kim JH. 1998. Bae sinjaebae gisul. Ohsung chulpansa, Seoul, Korea. p 25-79.
  10. Zhang X, Lee FZ, Eun JB. 2008. Physicochemical properties and glucose transport retarding effect of pectin from flesh of Asian pear at different growth stages. Korean J Food Sci Technol 40: 491-496.
  11. Lee SH, Yun SJ. 1999. The effect of exercise in dietary cholesterol and pectin intake on plasma lipids in collegiate. Korean J Exercise Nutrition 3: 63-76.
  12. Lifschitz CH. 2000. Carbohydrate absorption from fruit juices in infants. Pediatrics 105: E4. https://doi.org/10.1542/peds.105.1.e4
  13. Na CS, Yun DH, Choi DH, Kim JS, Cao CH, Eun JB. 2003. The effect of pear pectin on blood pressure, plasma renin, ANP and cardiac hypertrophy in hypertensive rat induced by 2K1C. J Korean Soc Food Sci Nutr 32: 700-705. https://doi.org/10.3746/jkfn.2003.32.5.700
  14. Escarpa A, Gonzalez MC. 1999. Fast separation of (poly) phenolic compounds from apples and pears by high-performance liquid chromatography with diode-array detection. J Chromatogr A 830: 301-309. https://doi.org/10.1016/S0021-9673(98)00893-0
  15. Oleszek W, Amot MJ, Aubert SY. 1994. Identification of some phenolics in pear fruit. J Agric Food Chem 42: 1261-1265. https://doi.org/10.1021/jf00042a002
  16. Kim JS, Na CS. 2002. Effects of pear phenolic compound on the STZ-treated mice for induction of diabetes. J Korean Soc Food Sci Nutr 31: 1107-1111. https://doi.org/10.3746/jkfn.2002.31.6.1107
  17. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. https://doi.org/10.1021/ac60111a017
  18. Blumenkrantz N, Asboe-Hansen G. 1973. New method for quantitative determination of uronic acid. Anal Biochem 54: 484-489. https://doi.org/10.1016/0003-2697(73)90377-1
  19. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  20. Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ. 1978. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative. Anal Biochem 85: 595-601 https://doi.org/10.1016/0003-2697(78)90260-9
  21. Jones TM, Albersheim P. 1972. A gas chromatography method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharide. Plant Physiol 49: 926-936. https://doi.org/10.1104/pp.49.6.926
  22. Kabat EA, Mayer MM. 1971. Complement and complement fixation. In Experimental Immunochemistry. 2nd ed. Thomas Publisher, Springfield, IL, USA. p 133-240.
  23. Platts-Mills TAE, Ishizaka K. 1974. Activation of the alternative pathway of human complement by rabbit cells. J Immunol 113: 348-358.
  24. Shimura K, Ito H, Hibasami H. 1983. Screening of hostmediated antitumor polysaccharides by crossed immunoelectrophoresis using fresh human serum. Jap J Pharmacol 33: 403-408. https://doi.org/10.1254/jjp.33.403
  25. Carpita NC, Gibeuat DM. 1993. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growing. Plant J 3: 1-30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x
  26. Pauty M, Albersheim P, Darvill A, York WS. 1999. Molecular domains of the cellulose/xyloglucans network in the cell walls of the higher plants. Plant J 20: 629-639. https://doi.org/10.1046/j.1365-313X.1999.00630.x
  27. Ridley BL, O’Neill MA, Mohnen D. 2001. Pectin: structure, biosynthesis, and oligogalcturonide-related signaling. Phytochemistry 57: 929-967. https://doi.org/10.1016/S0031-9422(01)00113-3
  28. O’Neill M, Albersheim P, Darvill A. 1990. The pectic polysaccharides of primary cell walls. In Methods in Plant Biochemistry Carbohydrates. Dey PM, ed. Academic Press, London, England. Vol 2, p 415-441.
  29. Ishii T. 1997. O-acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiol 113: 1265-1272. https://doi.org/10.1104/pp.113.4.1265
  30. Engelsen SB, Cros S, Mackie W, Perez S. 1996. A molecular builder for carbohydrates: application to polysaccharides and complex carbohydrates. Biopolymers 39: 417-433. https://doi.org/10.1002/(SICI)1097-0282(199609)39:3<417::AID-BIP13>3.3.CO;2-R
  31. Klis FM, Mol P, Hellingwerf K, Brul S. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26: 239-256. https://doi.org/10.1111/j.1574-6976.2002.tb00613.x
  32. Albersheim P, An J, Freshour G, Fulle MS, Guillen R, Ham KS, Hahn MG, Huang J, O'Neill M, Whitcombe A, Williams MV, York WS, Darvill AG. 1994. Structure and function studies of plant cell wall polysaccharide. Biochem Soc T 22: 374-378. https://doi.org/10.1042/bst0220374
  33. Saito H, Tomioka H, Sato K. 1988. PSK, a polysaccharide from Coriolus vesicolor, enhances oxygen metabolism of murine peritoneal macrophages and the host resistance to listerial infection. J Gen Microbiol 134: 1029-1035.
  34. Kwon MH, Sung HJ. 1997. Characteristics of immune response by polysaccharides with complement system activity. Food Sci Indus 30: 30-43.
  35. Jung YJ, Chun H, Kim KI, An JH, Shin DH, Hong BS, Cho HY, Yang HC. 2002. Purified polysaccharide activating the complement system from leaves of Diospyos kaki L. Korean J Food Sci Technol 34: 879-884.
  36. Whaley K. 1986. The complement system. In Complement in Health and Disease. Whaley K, ed. MTP Press, Lancaster, PA, USA. p 1-35.
  37. Kim JH, Shin KS, Lee H. 2002. Characterization and action mode of anti-complementary substance prepared from Lactobacillus plantarum. Korean J Food Sci Technol 34: 290-295.
  38. Hudson L, Hay FC. 1989. Two dimensional or crossed immunoelectrophoresis. In Practical Immunology. Blackwell Scientific Publications, Oxford, England. p 244-246.

Cited by

  1. Anti-inflammatory Effect of Polysaccharide Derived from Commercial Kanjang on Mast Cells vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.569
  2. Total sugar contents of edible and medicinal mushrooms comparative analysis by the extraction method vol.12, pp.4, 2014, https://doi.org/10.14480/JM.2014.12.4.299